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Simple Ill-Posed Problem: Image Restoration

True Noise

Naive Solution PSF

Mildly ill-posed problem: Slow decay of singular values. SNR 13



Notation: Spectral Decomposition of the Solution: The SVD

Consider general discrete problem

Ax = b, A ∈ Rm×n, b ∈ Rm, x ∈ Rn.

Singular value decomposition (SVD) of A rank r ≤ min(m,n)

A = UΣV T =

r∑
i=1

uiσiv
T
i , Σ = diag(σ1, . . . , σr).

Singular values σi, singular vectors ui, vi, rank r.
Expansion for the solution:

x =

r∑
i=1

si
σi
vi, si = uTi b



Regularization: Filtering and Truncation

Truncated SVD of size k gives best rank k approximation to A.
Surrogate model is given by Ak ≈ UkΣkVk

T .
Filtered and Truncated solution

x =

k∑
i=1

γi(α)
si
σi

vi

Filter Factor γi(α) (γi = 0 when i > k)
Regularization parameters :

I truncation k - find the size for the surrogate
model.

I regularization parameter α for the hybrid
surrogate.



Regularization Parameter Estimation: Find αopt to minimize F (α)

Filter function γi(α) and complement φi(α).
φ(α) = α2

α2+σ2
i

= 1− γi(α), i = 1 : r, φi = 1, i > k.

Unbiased Predictive Risk : Minimize functional, noise level η2

Uk(α) =

k∑
i=1

φ2i (α)s2i − 2η2
k∑
i=1

φi(α)

GCV : Minimize rational function, m∗ = min{m,n}

G(α) =

(∑m∗

i=1 φ
2
i (α)s2i

)
(∑m∗

i=1 φi(α)
)2

How does αopt = argminF (α) depend on k?



Convergence αk with k for GCV and UPRE: Examples Restore Tools

Different noise levels: GCV and UPRE
Grain Satellite

Mildly Ill-Posed Moderately Ill-Posed
σi = ζi−τ , 12 ≤ τ ≤ 1 σi = ζi−τ , τ > 1

αk converges with k and depends on noise level.
Supports use of truncated SVD as surrogate



Theory: Assumptions

Assumptions (Normalization)
The system is normalized so that we may assume σ1 = 1.

Assumptions (Decay Rate)
The measured coefficients si decay according to
|si|2 = σ

2(1+ν)
i > σ2 for 0 < ν < 1, 1 ≤ i ≤ `, i.e. the dominant

measured coefficients follow the decay rate of the exact
coefficients.

Assumptions (Noise in Coefficients)
There exists ` such that E(|si|2) = σ2 for all i > `, i.e. that the
coefficients si are noise dominated for i > `.



Theorems on Convergence of αk for UPRE [RHV18]

Theorem
Suppose Assumptions 2 and 3, and that Uk(αk) is a minimum
for Uk(α). Then αk > α` > σ`+1/

√
1− σ2`+1 = αmin for k ≥ `.

Theorem
Suppose the decay rate and noise assumptions, and that αopt,
and each αk, k > ` are unique on σ`+1/

√
1− σ2`+1 < α < 1.

Then
I {αk}k>` is on the average increasing with

limk→r E(αk) = E(αopt).
I {Uk(αk)} is increasing.

Theory can be used to estimate k and αk



Comparing Automatic Parameter Estimates by TSVD and SVD
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Figure: Box plots comparing parameter estimates αk with αopt for
problem Satellite computed from 100 runs for noise levels 1%,
5%, and 10%.

Robust algorithm verifies choice of k and αk with increasing k



Comparing Automatic Relative Errors TSVD and SVD
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Figure: Box plots comparing relative errors using estimated k and αk
for Full and Truncated SVD: for problem Satellite computed from
100 runs for noise levels 1%, 5%, and 10%.

Surrogate found automatically and error is less than full space



Truncated Singular Value Decomposition as surrogate for A

Remark (Observations for UPRE)

1. Find αk for surrogate model TSVD Ak = UkΣkV
T
k with k

terms.
2. Determine optimal k as αk converges to αopt

3. With UPRE for large enough k the full problem is
regularized: i.e. γi(αk) ≈ 0 for i > k.

Remark (Extending to Large Scale)

I The TSVD for large problems is not feasible?
I Use iterative methods, randomized SVD to find the

surrogate model of A.



Large Scale - Hybrid LSQR: Given k defines range space

LSQR Let β1 := ‖b‖2, and e
(k+1)
1 first column of Ik+1

Generate, lower bidiagonal Bk ∈ R(k+1)×k, column
orthonormal Hk+1 ∈ Rm×(k+1) , Gk ∈ Rn×k

AGk = Hk+1Bk, β1Hk+1e
(k+1)
1 = b.

Projected Problem on projected space: (standard Tikhonov)

wk(ζk) = argmin
w∈Rk

{‖Bkw − β1e
(k+1)
1 ‖22 + ζ2k‖w‖22}.

Projected Solution depends on ζoptk : Let Bk = Ũ Σ̃Ṽ T

xk(ζ
opt
k ) = Gkwk(ζ

opt
k ) = β1Gk

k+1∑
i=1

γi(ζ
opt
k )

ũTi e
(k+1)
1

σ̃i
ṽi

=

k∑
i=1

γi(ζ
opt
k )

ũTi (HT
k+1b)

σ̃i
Gkṽi =

k∑
i=1

γi(ζ
opt
k )

s̃i
σ̃i
Gkṽi

Approximate SVD: Ãk = (Hk+1Ũ)Σ̃(GkṼ )T



Hybrid Randomized Singular Value Decomposition : Proto [HMT11]

A ∈ Rm×n, target rank k, oversampling parameter p,
k + p� m. Power factor q. Compute A ≈ Ak = UkΣkV

T
k .

1: Generate a Gaussian random matrix Ω ∈ Rn×(k+p).
2: Compute Y = AΩ ∈ Rm×(k+p). Y = orth(Y )
3: If q > 0 repeat q times {Y = A(ATY ), Y = orth(Y )}. Power
4: Form B = Y TA ∈ R(k+p)×n. (Q = Y )
5: Economy SVD B = UBΣBV

T
B , UB ∈ R(k+p)×(k+p),

VB ∈ Rk×k
6: Uk = QUB(:, 1 : k), V k = VB(:, 1 : k), Σk = ΣB(1 : k, 1 : k)

Projected RSVD Problem

xk(µk) = argmin
x∈Rk

{‖Akx− b‖22 + µ2k‖x‖22}.

=

k∑
i=1

γi(µk)
uTi b

σi
vi. =

k∑
i=1

γi(µk)
si
σi

vi.

Approximate SVD Ak = UkΣkV
T
k



Summary Comparisons : rank k approximation of A

RSVD and LSQR provide approximate TSVD (see references)

TSVD LSQR RSVD
Model Ak Ãk Ak
SVD UkΣkV

T
k (Hk+1Ũ)Σ̃(GkṼ )T UkΣkV k

T

Terms k k k

si uTi b (Hk+1Ũk)Ti b uTi b

Basis vi (GkṼk)i vi
Coeff γi(αk) si

σi
vi γi(ζk) s̃i

σ̃i
(Gkṽ)i γi(µk) si

σi
vi

‖A−Ak‖ σk+1 Theorem Ãk Theorem Ak
sin(〈Vk, V̄k〉) Golub [GvL96] Jia [Jia17] Saibaba [Sai]

Accuracy depends on the surrogate model?



Relative Errors using Approximate LSQR/RSVD with oversampling

10
1

10
2

10
3

10
-1

10
0

Relative Errors

LSQR0

LSQR5

LSQR10

LSQR20

LSQR80

LSQR100

RSVD0

RSVD5

RSVD10

RSVD20

RSVD80

RSVD100

TSVD

OS LSQR conquers semi-convergence for small k.



Hybrid LSQR: LSQR with regularization
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Hybrid RSVD: RSVD with regularization
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Questions to address

1. Both algorithms show semi-convergence.
2. But what is happening with RSVD accuracy?
3. Why is OS for LSQR effective?
4. Relation of αk, ζk, µk.
5. Can automatic algorithm be applied

Investigate the surrogate approximation for RSVD and LSQR



Contrasting RSVD and LSQR spectrum : Mildly Ill-posed

Figure: RSVD: Good Approximation of Dominant Singular Values for
a problem of size 4096× 4096 using the RSVD algorithm using 100%
oversampling, as compared to the exact singular values of the
problem.
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Contrasting RSVD and LSQR spectrum : Mildly Ill-posed

Figure: LSQR: Good Approximation of fewer dominant singular
values for a problem of size 4096× 4096 using the LSQR algorithm
with a Krylov subspace of size k, as compared to the exact singular
values of the problem.



Contrasting RSVD and LSQR spectrum : Mildly Ill-posed

Figure: LSQR: Good Approximation of fewer dominant singular
values for a problem of size 4096× 4096 using the LSQR algorithm
with a Krylov subspace of size k, as compared to the exact singular
values of the problem. Oversampled 100%



The LSQR / RSVD spectrum

I The Lanczos algorithm provides good estimates of
extremal singular values

I LSQR exhibits semi-convergence as a result.
I LSQR interior eigenvalue approximations improve with

increasing k - approximations stabilize with increasing k.
I RSVD approximates dominant singular values, does not

capture ill-conditioning.



Contrast RSVD-LSQR: singular space approximation -with / without OS

Figure: Rank k approximation error RSVD Power with q = 2
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Power Iteration assists error reduction.



Contrast RSVD-LSQR: singular space approximation -with / without OS

Figure: Rank k approximation error RSVD q = 2 and OS LSQR
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Oversampling LSQR improves rank k estimate



Contrasting Subspace Canonical Angles : Mildly Ill-posed

Figure: RSVD: The canonical angles increase exponentially for
subspace j to subspace k from 4096× 4096 using the RSVD
algorithm and decrease with OS: Example Size k = 400
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Contrasting Subspace Canonical Angles : Mildly Ill-posed

Figure: RSVD with power iteration 2: The canonical angles increase
exponentially for subspace j to subspace k from 4096× 4096 using
the RSVD algorithm and decrease with OS: Example Size k = 400
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Contrasting Subspace Canonical Angles : Mildly Ill-posed

Figure: LSQR: The canonical angles increase after some subspace
size j∗ to subspace k from 4096× 4096 using the RSVD algorithm:
Example Size k = 400



IMPACT: V Basis Matrices (2D)- Lower basis vectors

LSQR RSVD RSVD q = 2
k = 100 p = 100%
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IMPACT: V Basis Matrices (2D)- Lower basis vectors

LSQR RSVD Power RSVD q = 2
k = 750 p = 100%
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Observations: LSQR and RSVD

1. LSQR : semi-convergence
2. OS LSQR : overcomes semi-convergence
3. RSVD has smaller rank k error than LS.
4. BUT RSVD does not capture the subspace of rank k from

a k + p estimate as well as LSQR - canonical angles are
larger.

5. Plots of the basis support the reduced accuracy of the
RSVD subspaces

Restored solutions at optimal k = 750, 50 for RSVD, LSQR, resp.



Restored Regularized Solutions noise level with SNR ≈ 13

Figure: LSQR k = 50
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Restored Regularized Solutions noise level with SNR ≈ 13

Figure: RSVD k = 50
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Restored Regularized Solutions noise level with SNR ≈ 13

Figure: LSQR k = 750
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Restored Regularized Solutions noise level with SNR ≈ 13

Figure: RSVD k = 750
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Overview Conclusions

Dominant Subspace Finding dominant singular space of model
matrix is important: Oversampling

RSVD / LSQR Trade offs depend on speed by which singular
values decrease (degree of ill-posedness)

Cost While LSQR costs more per iteration, provides the
dominant subspace more accurately for k small.

Hybrid Implementations stabilize the solution errors.
Future Investigate transfer of noise to the RSVD

subspace - apparently inaccurate.



Relevance to Data Science

Remark (Messages of the Analysis)

I SVD plays a role in analysis of large datasets?
I Impact of approximating the spectrum by surrogates?
I Important to understand impact of noise on spectrum
I Important to analyze the methods
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