Contrasting properties of RSVD and LSQR algorithms for solutions of ill-posed problems: Approximating the SVD

Rosemary Renaut ${ }^{1}$ Anthony Helmstetter ${ }^{1}$ Saeed Vatankhah ${ }^{2}$

1: School of Mathematical and Statistical Sciences, Arizona State University, renaut@asu.edu, anthony.helmstetter@asu.edu

2: Institute of Geophysics, University of Tehran, svatan@ut.ac.ir
International Conference on Mathematics of Data Science November 2018

Outline

Background: TSVD surrogate for the small scale Standard Approaches to Estimate Regularization Problem Convergence of the regularization parameter for UPRE Algorithm Verification

Methods for the Large Scale: Approximating the SVD
Krylov: Golub Kahan Bidiagonalization - LSQR
Randomized SVD
Simulations: Hybrid RSVD and Hybrid LSQR

Conclusions: RSVD - LSQR
Main Results
Relevance to Data Science

Simple III-Posed Problem: Image Restoration

Mildly ill-posed problem: Slow decay of singular values. SNR 13

Notation: Spectral Decomposition of the Solution: The SVD

Consider general discrete problem

$$
A \mathbf{x}=\mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \quad \mathbf{b} \in \mathbb{R}^{m}, \quad \mathbf{x} \in \mathbb{R}^{n}
$$

Singular value decomposition (SVD) of A rank $r \leq \min (m, n)$

$$
A=U \Sigma V^{T}=\sum_{i=1}^{r} \mathbf{u}_{i} \sigma_{i} \mathbf{v}_{i}^{T}, \quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)
$$

Singular values σ_{i}, singular vectors $\mathbf{u}_{i}, \mathbf{v}_{i}$, rank r.
Expansion for the solution:

$$
\mathbf{x}=\sum_{i=1}^{r} \frac{\mathbf{s}_{i}}{\sigma_{i}} \mathbf{v}_{i}, \quad \mathbf{s}_{i}=\mathbf{u}_{i}^{T} \mathbf{b}
$$

Regularization: Filtering and Truncation

Truncated SVD of size k gives best rank k approximation to A.
Surrogate model is given by $A_{k} \approx U_{k} \Sigma_{k} V_{k}^{T}$.
Filtered and Truncated solution

$$
\mathbf{x}=\sum_{i=1}^{k} \gamma_{i}(\alpha) \frac{\mathbf{s}_{i}}{\sigma_{i}} \mathbf{v}_{i}
$$

Filter Factor $\gamma_{i}(\alpha)\left(\gamma_{i}=0\right.$ when $\left.i>k\right)$
Regularization parameters:

- truncation k - find the size for the surrogate model.
- regularization parameter α for the hybrid surrogate.

Regularization Parameter Estimation: Find $\alpha^{\text {opt }}$ to minimize $F(\alpha)$

Filter function $\gamma_{i}(\alpha)$ and complement $\phi_{i}(\alpha)$.
$\phi(\alpha)=\frac{\alpha^{2}}{\alpha^{2}+\sigma_{i}^{2}}=1-\gamma_{i}(\alpha), i=1: r, \phi_{i}=1, i>k$.
Unbiased Predictive Risk: Minimize functional, noise level η^{2}

$$
U_{k}(\alpha)=\sum_{i=1}^{k} \phi_{i}^{2}(\alpha) \mathbf{s}_{i}^{2}-2 \eta^{2} \sum_{i=1}^{k} \phi_{i}(\alpha)
$$

GCV : Minimize rational function, $m^{*}=\min \{m, n\}$

$$
G(\alpha)=\frac{\left(\sum_{i=1}^{m^{*}} \phi_{i}^{2}(\alpha) \mathbf{s}_{i}^{2}\right)}{\left(\sum_{i=1}^{m^{*}} \phi_{i}(\alpha)\right)^{2}}
$$

How does $\alpha^{\text {opt }}=\operatorname{argmin} F(\alpha)$ depend on k ?

Convergence α_{k} with k for GCV and UPRE: Examples Restore Tools

Different noise levels: GCV and UPRE

Grain
Mildly III-Posed

$$
\sigma_{i}=\zeta i^{-\tau}, \frac{1}{2} \leq \tau \leq 1
$$

Satellite
Moderately III-Posed

$$
\sigma_{i}=\zeta i^{-\tau}, \tau>1
$$

α_{k} converges with k and depends on noise level.
Supports use of truncated SVD as surrogate

Theory: Assumptions

Assumptions (Normalization)

The system is normalized so that we may assume $\sigma_{1}=1$.
Assumptions (Decay Rate)
The measured coefficients s_{i} decay according to
$\left|\mathbf{s}_{i}\right|^{2}=\sigma_{i}^{2(1+\nu)}>\sigma^{2}$ for $0<\nu<1,1 \leq i \leq \ell$, i.e. the dominant measured coefficients follow the decay rate of the exact coefficients.

Assumptions (Noise in Coefficients)

There exists ℓ such that $E\left(\left|\mathbf{s}_{i}\right|^{2}\right)=\sigma^{2}$ for all $i>\ell$, i.e. that the coefficients s_{i} are noise dominated for $i>\ell$.

Theorems on Convergence of α_{k} for UPRE [RHV18]

Theorem

Suppose Assumptions 2 and 3 , and that $U_{k}\left(\alpha_{k}\right)$ is a minimum for $U_{k}(\alpha)$. Then $\alpha_{k}>\alpha_{\ell}>\sigma_{\ell+1} / \sqrt{1-\sigma_{\ell+1}^{2}}=\alpha_{\text {min }}$ for $k \geq \ell$.
Theorem
Suppose the decay rate and noise assumptions, and that $\alpha^{\text {opt }}$, and each $\alpha_{k}, k>\ell$ are unique on $\sigma_{\ell+1} / \sqrt{1-\sigma_{\ell+1}^{2}}<\alpha<1$. Then

- $\left\{\alpha_{k}\right\}_{k>\ell}$ is on the average increasing with $\lim _{k \rightarrow r} E\left(\alpha_{k}\right)=E\left(\alpha^{\text {opt }}\right)$.
- $\left\{U_{k}\left(\alpha_{k}\right)\right\}$ is increasing.

Comparing Automatic Parameter Estimates by TSVD and SVD

Figure: Box plots comparing parameter estimates α_{k} with $\alpha^{\text {opt }}$ for problem satellite computed from 100 runs for noise levels 1%, 5%, and 10%.

Robust algorithm verifies choice of k and α_{k} with increasing k

Comparing Automatic Relative Errors TSVD and SVD

Figure: Box plots comparing relative errors using estimated k and α_{k} for Full and Truncated SVD: for problem Satellite computed from 100 runs for noise levels $1 \%, 5 \%$, and 10%.

Surrogate found automatically and error is less than full space

Truncated Singular Value Decomposition as surrogate for A

Remark (Observations for UPRE)

1. Find α_{k} for surrogate model TSVD $A_{k}=U_{k} \Sigma_{k} V_{k}^{T}$ with k terms.
2. Determine optimal k as α_{k} converges to $\alpha^{\text {opt }}$
3. With UPRE for large enough k the full problem is regularized: i.e. $\gamma_{i}\left(\alpha_{k}\right) \approx 0$ for $i>k$.

Remark (Extending to Large Scale)

- The TSVD for large problems is not feasible?
- Use iterative methods, randomized SVD to find the surrogate model of A.

Large Scale - Hybrid LSQR: Given k defines range space

LSQR Let $\beta_{1}:=\|\mathbf{b}\|_{2}$, and $\mathbf{e}_{1}^{(k+1)}$ first column of I_{k+1} Generate, lower bidiagonal $B_{k} \in \mathcal{R}^{(k+1) \times k}$, column orthonormal $H_{k+1} \in \mathcal{R}^{m \times(k+1)}, G_{k} \in \mathcal{R}^{n \times k}$

$$
A G_{k}=H_{k+1} B_{k}, \quad \beta_{1} H_{k+1} \mathbf{e}_{1}^{(k+1)}=\mathbf{b}
$$

Projected Problem on projected space: (standard Tikhonov)

$$
\mathbf{w}_{k}\left(\zeta_{k}\right)=\underset{\mathbf{w} \in \mathcal{R}^{k}}{\operatorname{argmin}}\left\{\left\|B_{k} \mathbf{w}-\beta_{1} \mathbf{e}_{1}^{(k+1)}\right\|_{2}^{2}+\zeta_{k}^{2}\|\mathbf{w}\|_{2}^{2}\right\} .
$$

Projected Solution depends on $\zeta_{k}^{\text {opt }}$: Let $B_{k}=\tilde{U} \tilde{\Sigma} \tilde{V}^{T}$

$$
\begin{aligned}
\mathbf{x}_{k}\left(\zeta_{k}^{\mathrm{opt}}\right) & =G_{k} \mathbf{w}_{k}\left(\zeta_{k}^{\mathrm{opt}}\right)=\beta_{1} G_{k} \sum_{i=1}^{k+1} \gamma_{i}\left(\zeta_{k}^{\mathrm{opt}}\right) \frac{\tilde{\mathbf{u}}_{i}^{T} \mathbf{e}_{1}^{(k+1)}}{\tilde{\sigma}_{i}} \tilde{\mathbf{v}}_{i} \\
& =\sum_{i=1}^{k} \gamma_{i}\left(\zeta_{k}^{\mathrm{opt}}\right) \frac{\tilde{\mathbf{u}}_{i}^{T}\left(H_{k+1}^{T} \mathbf{b}\right)}{\tilde{\sigma}_{i}} G_{k} \tilde{\mathbf{v}}_{i}=\sum_{i=1}^{k} \gamma_{i}\left(\zeta_{k}^{\mathrm{opt}}\right) \frac{\tilde{\mathbf{s}}_{i}}{\tilde{\sigma}_{i}} G_{k} \tilde{\mathbf{v}}_{i}
\end{aligned}
$$

Approximate SVD: $\tilde{A}_{k}=\left(H_{k+1} \tilde{U}\right) \tilde{\Sigma}\left(G_{k} \tilde{V}\right)^{T}$

Hybrid Randomized Singular Value Decomposition : Proto [HMT11]

$A \in \mathcal{R}^{m \times n}$, target rank k, oversampling parameter p,
$k+p \ll m$. Power factor q. Compute $A \approx \bar{A}_{k}=\bar{U}_{k} \bar{\Sigma}_{k} \bar{V}_{k}^{T}$.
1: Generate a Gaussian random matrix $\Omega \in \mathcal{R}^{n \times(k+p)}$.
2: Compute $Y=A \Omega \in \mathcal{R}^{m \times(k+p)}$. $Y=\operatorname{orth}(Y)$
3: If $q>0$ repeat q times $\left\{Y=A\left(A^{T} Y\right), Y=\operatorname{orth}(Y)\right\}$. Power
4: Form $B=Y^{T} A \in \mathcal{R}^{(k+p) \times n}$. $(Q=Y)$
5: Economy SVD $B=U_{B} \Sigma_{B} V_{B}^{T}, U_{B} \in \mathcal{R}^{(k+p) \times(k+p)}$,

$$
\underline{V}_{B} \in \mathcal{R}^{k \times k}
$$

6: $\bar{U}_{k}=Q U_{B}(:, 1: k), \bar{V}_{k}=V_{B}(:, 1: k), \bar{\Sigma}_{k}=\Sigma_{B}(1: k, 1: k)$
Projected RSVD Problem

$$
\begin{aligned}
& \mathbf{x}_{k}\left(\mu_{k}\right)=\underset{\mathbf{x} \in \mathcal{R}^{k}}{\operatorname{argmin}}\left\{\left\|\bar{A}_{k} \mathbf{x}-\mathbf{b}\right\|_{2}^{2}+\mu_{k}^{2}\|\mathbf{x}\|_{2}^{2}\right\} . \\
& =\sum_{i=1}^{k} \gamma_{i}\left(\mu_{k}\right) \frac{\overline{\mathbf{u}}_{i}^{T} \mathbf{b}}{\bar{\sigma}_{i}} \overline{\mathbf{v}}_{i} .=\sum_{i=1}^{k} \gamma_{i}\left(\mu_{k}\right) \frac{\overline{\mathbf{s}}_{i}}{\bar{\sigma}_{i}} \overline{\mathbf{v}}_{i} .
\end{aligned}
$$

Approximate SVD $\bar{A}_{k}=\bar{U}_{k} \bar{\Sigma}_{k} \bar{V}_{k}^{T}$

Summary Comparisons : rank k approximation of A

RSVD and LSQR provide approximate TSVD (see references)

	TSVD	LSQR	RSVD		
Model	A_{k}	\tilde{A}_{k}	\bar{A}_{k}		
SVD	$U_{k} \Sigma_{k} V_{k}^{T}$	$\left(H_{k+1} \tilde{U}\right) \tilde{\Sigma}\left(G_{k} \tilde{V}\right)^{T}$	$\bar{U}_{k} \bar{\Sigma}_{k} \bar{V}_{k}{ }^{T}$		
Terms	k	,	k		
s_{i}	$\mathbf{u}_{i}^{T} \mathrm{~b}$	$\left(H_{k+1} \tilde{U}_{k}\right)_{i}^{T} \mathbf{b}$	$\overline{\mathbf{u}}_{i}^{T} \mathrm{~b}$		
Basis	v_{i}	$\left(G_{k} \tilde{V}_{k}\right)_{i}$	$\overline{\mathrm{v}}_{i}$		
Coeff	$\gamma_{i}\left(\alpha_{k}\right) \frac{\mathbf{s}_{i}}{\sigma_{i}} \mathbf{v}_{i}$		$\gamma_{i}\left(\mu_{k}\right) \bar{S}^{\frac{\sigma_{i}}{} \bar{\sigma}_{i} \overline{\mathrm{v}}_{i}}$		
$\left\\|A-A_{\underline{k}}\right\\|$	σ_{k+1} Golub [Gvi96]	Theorem \tilde{A}_{k} Jia [Jia17]	Theorem \bar{A}_{k} Saibaba [Sai]		

Accuracy depends on the surrogate model?

Relative Errors using Approximate LSQR/RSVD with oversampling

OS LSQR conquers semi-convergence for small k.

Hybrid LSQR: LSQR with regularization

Relative Errors less than TSVD for small k

Hybrid RSVD: RSVD with regularization

Relative Errors larger than TSVD for small k

Questions to address

1. Both algorithms show semi-convergence.
2. But what is happening with RSVD accuracy?
3. Why is OS for LSQR effective?
4. Relation of $\alpha_{k}, \zeta_{k}, \mu_{k}$.
5. Can automatic algorithm be applied

Contrasting RSVD and LSQR spectrum : Mildly III-posed

Figure: RSVD: Good Approximation of Dominant Singular Values for a problem of size 4096×4096 using the RSVD algorithm using 100% oversampling, as compared to the exact singular values of the problem.

Contrasting RSVD and LSQR spectrum : Mildly III-posed

Figure: LSQR: Good Approximation of fewer dominant singular values for a problem of size 4096×4096 using the LSQR algorithm with a Krylov subspace of size k, as compared to the exact singular values of the problem.

Contrasting RSVD and LSQR spectrum : Mildly III-posed

Figure: LSQR: Good Approximation of fewer dominant singular values for a problem of size 4096×4096 using the LSQR algorithm with a Krylov subspace of size k, as compared to the exact singular values of the problem. Oversampled 100%

The LSQR / RSVD spectrum

- The Lanczos algorithm provides good estimates of extremal singular values
- LSQR exhibits semi-convergence as a result.
- LSQR interior eigenvalue approximations improve with increasing k - approximations stabilize with increasing k.
- RSVD approximates dominant singular values, does not capture ill-conditioning.

Contrast RSVD-LSQR: singular space approximation -with / without OS

Figure: Rank k approximation error RSVD Power with $q=2$

Power Iteration assists error reduction.

Contrast RSVD-LSQR: singular space approximation -with / without OS

Figure: Rank k approximation error RSVD $q=2$ and OS LSQR

Oversampling LSQR improves rank k estimate

Contrasting Subspace Canonical Angles : Mildly III-posed

Figure: RSVD: The canonical angles increase exponentially for subspace j to subspace k from 4096×4096 using the RSVD algorithm and decrease with OS: Example Size $k=400$

Contrasting Subspace Canonical Angles : Mildly III-posed

Figure: RSVD with power iteration 2: The canonical angles increase exponentially for subspace j to subspace k from 4096×4096 using the RSVD algorithm and decrease with OS: Example Size $k=400$

Contrasting Subspace Canonical Angles : Mildly III-posed

Figure: LSQR: The canonical angles increase after some subspace size j^{*} to subspace k from 4096×4096 using the RSVD algorithm: Example Size $k=400$

IMPACT: V Basis Matrices (2D)- Lower basis vectors

IMPACT: V Basis Matrices (2D)- Lower basis vectors

LSQR
RSVD

$$
k=750 p=100 \%
$$

$$
k=2000 p=100 \%
$$

Observations: LSQR and RSVD

1. LSQR : semi-convergence
2. OS LSQR : overcomes semi-convergence
3. RSVD has smaller rank k error than LS.
4. BUT RSVD does not capture the subspace of rank k from a $k+p$ estimate as well as LSQR - canonical angles are larger.
5. Plots of the basis support the reduced accuracy of the RSVD subspaces

Restored Regularized Solutions noise level with SNR ≈ 13

Figure: LSQR $k=50$

Restored Regularized Solutions noise level with SNR ≈ 13

Figure: RSVD $k=50$

$k=50 p=10 \% q=2$

$\mathrm{k}=50 \mathrm{p}=20 \% \mathrm{q}=2$
$k=50 p=80 \% q=2$

Restored Regularized Solutions noise level with SNR ≈ 13

Figure: LSQR $k=750$

Restored Regularized Solutions noise level with SNR ≈ 13

Figure: RSVD $k=750$

Overview Conclusions

Dominant Subspace Finding dominant singular space of model matrix is important: Oversampling
RSVD / LSQR Trade offs depend on speed by which singular values decrease (degree of ill-posedness)
Cost While LSQR costs more per iteration, provides the dominant subspace more accurately for k small.
Hybrid Implementations stabilize the solution errors.
Future Investigate transfer of noise to the RSVD subspace - apparently inaccurate.

Relevance to Data Science

Remark (Messages of the Analysis)

- SVD plays a role in analysis of large datasets?
- Impact of approximating the spectrum by surrogates?
- Important to understand impact of noise on spectrum
- Important to analyze the methods

Some key references
Gene H. Golub and Charles F. van Loan.
Matrix computations.
Johns Hopkins Press, Baltimore, 3rd edition, 1996.
N. Halko, P. G. Martinsson, and J. A. Tropp.

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Review, 53(2):217-288, 2011.
Zhongxiao Jia.
The regularization theory of the Krylov iterative solvers LSQR and CGLS for linear discrete ill-posed problems, part I: the simple singular value case.
https://arxiv.org/abs/1701.05708, January 2017.
R. A. Renaut, A. Helmstetter, and S. Vatankhah.

Convergence of regularization parameters for solutions using the filtered truncated singular value decomposition.
http://arxiv.org/abs/1809.00249, 2018.
Submitted.
Arvind K. Saibaba.
Analysis of randomized subspace iteration: Canonical angles and unitarily invariant norms.
http://arxiv.org/abs/1804.02614.

