Contrasting properties of RSVD and LSQR algorithms for solutions of ill-posed problems: Approximating the SVD

Rosemary Renaut¹ Anthony Helmstetter ¹ Saeed Vatankhah²

1: School of Mathematical and Statistical Sciences, Arizona State University, renaut@asu.edu, anthony.helmstetter@asu.edu

2: Institute of Geophysics, University of Tehran, svatan@ut.ac.ir

International Conference on Mathematics of Data Science November 2018

Outline

Background: TSVD surrogate for the small scale

Standard Approaches to Estimate Regularization Problem Convergence of the regularization parameter for UPRE Algorithm Verification

Methods for the Large Scale: Approximating the SVD Krylov: Golub Kahan Bidiagonalization - LSQR Randomized SVD Simulations: Hybrid RSVD and Hybrid LSQR

Conclusions: RSVD - LSQR

Main Results Relevance to Data Science

Simple III-Posed Problem: Image Restoration

Mildly ill-posed problem: Slow decay of singular values. SNR 13

Consider general discrete problem

$$A\mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \quad \mathbf{b} \in \mathbb{R}^m, \quad \mathbf{x} \in \mathbb{R}^n.$$

Singular value decomposition (SVD) of A rank $r \leq \min(m, n)$

$$A = U\Sigma V^T = \sum_{i=1}^r \mathbf{u}_i \sigma_i \mathbf{v}_i^T, \quad \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r).$$

Singular values σ_i , singular vectors \mathbf{u}_i , \mathbf{v}_i , rank r. Expansion for the solution:

$$\mathbf{x} = \sum_{i=1}^{r} rac{\mathbf{s}_i}{\sigma_i} \mathbf{v}_i, \quad \mathbf{s}_i = \mathbf{u}_i^T \mathbf{b}$$

Truncated SVD of size *k* gives best rank *k* approximation to *A*. Surrogate model is given by $A_k \approx U_k \Sigma_k V_k^T$.

Filtered and Truncated solution

$$\mathbf{x} = \sum_{i=1}^{k} \gamma_i(\alpha) \boxed{\frac{\mathbf{s}_i}{\sigma_i}} \mathbf{v}_i$$

Filter Factor $\gamma_i(\alpha)$ ($\gamma_i = 0$ when i > k)

Regularization parameters :

- truncation k find the size for the surrogate model.
- regularization parameter *α* for the hybrid surrogate.

Filter function $\gamma_i(\alpha)$ and complement $\phi_i(\alpha)$. $\phi(\alpha) = \frac{\alpha^2}{\alpha^2 + \sigma_i^2} = 1 - \gamma_i(\alpha), i = 1 : r, \phi_i = 1, i > k.$

Unbiased Predictive Risk : Minimize functional, noise level η^2

$$U_{\mathbf{k}}(\alpha) = \sum_{i=1}^{\mathbf{k}} \phi_i^2(\alpha) \mathbf{s}_i^2 - 2\eta^2 \sum_{i=1}^{\mathbf{k}} \phi_i(\alpha)$$

GCV : Minimize rational function, $m^* = \min\{m, n\}$

$$G(\boldsymbol{\alpha}) = \frac{\left(\sum_{i=1}^{m^*} \phi_i^2(\boldsymbol{\alpha}) \mathbf{s}_i^2\right)}{\left(\sum_{i=1}^{m^*} \phi_i(\boldsymbol{\alpha})\right)^2}$$

How does $\alpha^{\text{opt}} = \operatorname{argmin} F(\alpha)$ depend on *k*?

Supports use of truncated SVD as surrogate

Assumptions (Normalization)

The system is normalized so that we may assume $\sigma_1 = 1$.

Assumptions (Decay Rate)

The measured coefficients \mathbf{s}_i decay according to $|\mathbf{s}_i|^2 = \sigma_i^{2(1+\nu)} > \sigma^2$ for $0 < \nu < 1$, $1 \le i \le \ell$, i.e. the dominant measured coefficients follow the decay rate of the exact coefficients.

Assumptions (Noise in Coefficients)

There exists ℓ such that $E(|\mathbf{s}_i|^2) = \sigma^2$ for all $i > \ell$, i.e. that the coefficients \mathbf{s}_i are noise dominated for $i > \ell$.

Theorem

Suppose Assumptions 2 and 3, and that $U_k(\alpha_k)$ is a minimum for $U_k(\alpha)$. Then $\alpha_k > \alpha_\ell > \sigma_{\ell+1}/\sqrt{1 - \sigma_{\ell+1}^2} = \alpha_{\min}$ for $k \ge \ell$.

Theorem

Suppose the decay rate and noise assumptions, and that α^{opt} , and each α_k , $k > \ell$ are unique on $\sigma_{\ell+1}/\sqrt{1-\sigma_{\ell+1}^2} < \alpha < 1$. Then

- ► $\{\alpha_k\}_{k>\ell}$ is on the average increasing with $\lim_{k\to r} E(\alpha_k) = E(\alpha^{\text{opt}}).$
- $\{U_k(\alpha_k)\}$ is increasing.

Theory can be used to estimate k and α_k

Figure: Box plots comparing parameter estimates α_k with α^{opt} for problem Satellite computed from 100 runs for noise levels 1%, 5%, and 10%.

Robust algorithm verifies choice of k and α_k with increasing k

Figure: Box plots comparing relative errors using estimated k and α_k for Full and Truncated SVD: for problem Satellite computed from 100 runs for noise levels 1%, 5%, and 10%.

Surrogate found automatically and error is less than full space

Remark (Observations for UPRE)

- 1. Find α_k for surrogate model TSVD $A_k = U_k \Sigma_k V_k^T$ with k terms.
- 2. Determine optimal k as α_k converges to α^{opt}
- 3. With UPRE for large enough k the full problem is regularized: i.e. $\gamma_i(\alpha_k) \approx 0$ for i > k.

Remark (Extending to Large Scale)

- The TSVD for large problems is not feasible?
- Use iterative methods, randomized SVD to find the surrogate model of A.

Large Scale - Hybrid LSQR: Given k defines range space

LSQR Let $\beta_1 := \|\mathbf{b}\|_2$, and $\mathbf{e}_1^{(k+1)}$ first column of I_{k+1} Generate, lower bidiagonal $B_k \in \mathcal{R}^{(k+1) \times k}$, column orthonormal $H_{k+1} \in \mathcal{R}^{m \times (k+1)}$, $G_k \in \mathcal{R}^{n \times k}$

$$AG_{\boldsymbol{k}} = H_{\boldsymbol{k}+1}B_{\boldsymbol{k}}, \quad \beta_1 H_{\boldsymbol{k}+1}\mathbf{e}_1^{(\boldsymbol{k}+1)} = \mathbf{b}.$$

Projected Problem on projected space: (standard Tikhonov)

$$\mathbf{w}_{k}(\zeta_{k}) = \underset{\mathbf{w} \in \mathcal{R}^{k}}{\operatorname{argmin}} \{ \|B_{k}\mathbf{w} - \beta_{1}\mathbf{e}_{1}^{(k+1)}\|_{2}^{2} + \zeta_{k}^{2}\|\mathbf{w}\|_{2}^{2} \}.$$
Projected Solution depends on $\zeta_{k}^{\operatorname{opt}}$: Let $B_{k} = \tilde{U}\tilde{\Sigma}\tilde{V}^{T}$

$$\mathbf{x}_{k}(\boldsymbol{\zeta}_{k}^{\text{opt}}) = G_{k}\mathbf{w}_{k}(\boldsymbol{\zeta}_{k}^{\text{opt}}) = \beta_{1}G_{k}\sum_{i=1}^{k+1}\gamma_{i}(\boldsymbol{\zeta}_{k}^{\text{opt}})\frac{\tilde{\mathbf{u}}_{i}^{T}\mathbf{e}_{1}^{(k+1)}}{\tilde{\sigma}_{i}}\tilde{\mathbf{v}}_{i}$$
$$= \sum_{i=1}^{k}\overline{\gamma_{i}(\boldsymbol{\zeta}_{k}^{\text{opt}})\frac{\tilde{\mathbf{u}}_{i}^{T}(H_{k+1}^{T}\mathbf{b})}{\tilde{\sigma}_{i}}G_{k}\tilde{\mathbf{v}}_{i}} = \sum_{i=1}^{k}\overline{\gamma_{i}(\boldsymbol{\zeta}_{k}^{\text{opt}})\frac{\tilde{\mathbf{s}}_{i}}{\tilde{\sigma}_{i}}G_{k}\tilde{\mathbf{v}}_{i}}$$

Approximate SVD: $\tilde{A}_{k} = (H_{k+1}\tilde{U})\tilde{\Sigma}(G_{k}\tilde{V})^{T}$

Hybrid Randomized Singular Value Decomposition : Proto [HMT11]

 $A \in \mathcal{R}^{m \times n}$, target rank k, oversampling parameter p,

 $k + p \ll m$. Power factor q. Compute $A \approx \overline{A}_k = \overline{U}_k \overline{\Sigma}_k \overline{V}_k^T$.

- 1: Generate a Gaussian random matrix $\Omega \in \mathcal{R}^{n \times (k+p)}$.
- 2: Compute $Y = A\Omega \in \mathcal{R}^{m \times (k+p)}$. $Y = \operatorname{orth}(Y)$
- 3: If q > 0 repeat q times $\{Y = A(A^TY), Y = \text{orth}(Y)\}$. Power
- 4: Form $B = Y^T A \in \mathcal{R}^{(k+p) \times n}$. (Q = Y)
- 5: Economy SVD $B = U_B \Sigma_B V_B^T$, $U_B \in \mathcal{R}^{(k+p) \times (k+p)}$, $V_B \in \mathcal{R}^{k \times k}$

6:
$$\overline{U}_{\boldsymbol{k}} = QU_B(:, 1:\boldsymbol{k}), \, \overline{V}_{\boldsymbol{k}} = V_B(:, 1:\boldsymbol{k}), \, \overline{\Sigma}_{\boldsymbol{k}} = \Sigma_B(1:\boldsymbol{k}, 1:\boldsymbol{k})$$

Projected RSVD Problem

$$\begin{aligned} \mathbf{x}_{k}(\mu_{k}) &= \operatorname*{argmin}_{\mathbf{x}\in\mathcal{R}^{k}} \{ \|\overline{A}_{k}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \mu_{k}^{2} \|\mathbf{x}\|_{2}^{2} \} \\ &= \sum_{i=1}^{k} \overline{\gamma_{i}(\mu_{k}) \frac{\overline{\mathbf{u}}_{i}^{T}\mathbf{b}}{\overline{\sigma}_{i}}} \overline{\mathbf{v}}_{i}. \end{aligned} = \sum_{i=1}^{k} \overline{\gamma_{i}(\mu_{k}) \frac{\overline{\mathbf{s}}_{i}}{\overline{\sigma}_{i}}} \overline{\mathbf{v}}_{i}. \end{aligned}$$

Approximate SVD $\overline{A}_{k} = \overline{U}_{k} \overline{\Sigma}_{k} \overline{V}_{k}^{T}$

RSVD and LSQR provide approximate TSVD (see references)

		TSVD	LSQR	RSVD
Model		$A_{\mathbf{k}}$	$ ilde{A}_{m k}$	\overline{A}_{k}
SVD		$U_{k}\Sigma_{k}V_{k}^{T}$	$(H_{\mathbf{k}+1}\tilde{U})\tilde{\Sigma}(G_{\mathbf{k}}\tilde{V})^T$	$\overline{U}_{k}\overline{\Sigma}_{k}\overline{V}_{k}^{T}$
Terms		k	k	k
\mathbf{s}_i		$\mathbf{u}_i^T \mathbf{b}$	$(H_{\boldsymbol{k}+1}\tilde{U}_{\boldsymbol{k}})_i^T\mathbf{b}$	$\overline{\mathbf{u}}_i^T \mathbf{b}$
Basis		\mathbf{v}_i	$(G_k \tilde{V}_k)_i$	$\overline{\mathbf{v}}_i$
Coeff		$\gamma_i(lpha_k) rac{\mathbf{s}_i}{\sigma_i} \mathbf{v}_i$	$\gamma_i(\boldsymbol{\zeta_k}) rac{ ilde{\mathbf{s}}_i}{ ilde{\sigma}_i} (G_{\boldsymbol{k}} ilde{\mathbf{v}})_i$	$\gamma_i(\mu_k) \frac{\overline{\mathbf{s}}_i}{\overline{\sigma}_i} \overline{\mathbf{v}}_i$
$\ A - A_k\ $		σ_{k+1}	Theorem \tilde{A}_{k}	Theorem \overline{A}_{k}
$\sin(\langle V_k, \bar{V}_k \rangle)$		Golub [GvL96]	Jia [Jia17]	Saibaba [Sai]
Accuracy depends on the surrogate model?				

Relative Errors using Approximate LSQR/RSVD with oversampling

- 1. Both algorithms show semi-convergence.
- 2. But what is happening with RSVD accuracy?
- 3. Why is OS for LSQR effective?
- 4. Relation of α_k , ζ_k , μ_k .
- 5. Can automatic algorithm be applied

Investigate the surrogate approximation for RSVD and LSQR

Figure: RSVD: Good Approximation of Dominant Singular Values for a problem of size 4096×4096 using the RSVD algorithm using 100% oversampling, as compared to the exact singular values of the problem.

Figure: LSQR: Good Approximation of fewer dominant singular values for a problem of size 4096×4096 using the LSQR algorithm with a Krylov subspace of size k, as compared to the exact singular values of the problem.

Figure: LSQR: Good Approximation of fewer dominant singular values for a problem of size 4096×4096 using the LSQR algorithm with a Krylov subspace of size k, as compared to the exact singular values of the problem. Oversampled **100**%

- The Lanczos algorithm provides good estimates of extremal singular values
- LSQR exhibits semi-convergence as a result.
- LSQR interior eigenvalue approximations *improve* with increasing k - approximations **stabilize** with increasing k.
- RSVD approximates dominant singular values, does not capture ill-conditioning.

Power Iteration assists error reduction.

Oversampling LSQR improves rank k estimate

Figure: RSVD: The canonical angles increase exponentially for subspace *j* to subspace *k* from 4096×4096 using the RSVD algorithm and decrease with OS: Example Size k = 400

Figure: RSVD with power iteration 2: The canonical angles increase exponentially for subspace *j* to subspace *k* from 4096×4096 using the RSVD algorithm and decrease with OS: Example Size k = 400

Figure: LSQR: The canonical angles increase after some subspace size j^* to subspace k from 4096×4096 using the RSVD algorithm: Example Size k = 400

IMPACT: V Basis Matrices (2D)- Lower basis vectors

IMPACT: V Basis Matrices (2D)- Lower basis vectors

- 1. LSQR : semi-convergence
- 2. OS LSQR : overcomes semi-convergence
- 3. RSVD has smaller rank k error than LS.
- 4. BUT RSVD does not capture the subspace of rank k from a k + p estimate as well as LSQR canonical angles are larger.
- 5. Plots of the basis support the reduced accuracy of the RSVD subspaces

Restored solutions at optimal k = 750, 50 for RSVD, LSQR, resp.

Figure: LSQR k = 50

k=50 p=0%

k=50 p=10%

k=50 p=20%

Figure: RSVD k = 50

k=50 p=0% q=2

k=50 p=20% q=2

Figure: LSQR k = 750

k=750 p=0%

k=750 p=10%

k=750 p=20%

Figure: RSVD k = 750

k=750 p=0% q=2

k=750 p=10% q=2

k=750 p=20% q=2

Dominant Subspace Finding dominant singular space of model matrix is important: Oversampling

RSVD / LSQR Trade offs depend on speed by which singular values decrease (degree of ill-posedness)

- Cost While LSQR costs more per iteration, provides the dominant subspace more accurately for *k* small.
- Hybrid Implementations stabilize the solution errors.
- Future Investigate transfer of noise to the RSVD subspace apparently inaccurate.

Remark (Messages of the Analysis)

- SVD plays a role in analysis of large datasets?
- Impact of approximating the spectrum by surrogates?
- Important to understand impact of noise on spectrum
- Important to analyze the methods

Some key references

Gene H. Golub and Charles F. van Loan.

Matrix computations.

Johns Hopkins Press, Baltimore, 3rd edition, 1996.

N. Halko, P. G. Martinsson, and J. A. Tropp.

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Review, 53(2):217-288, 2011.

Zhongxiao Jia.

The regularization theory of the Krylov iterative solvers LSQR and CGLS for linear discrete ill-posed problems, part I: the simple singular value case.

https://arxiv.org/abs/1701.05708, January 2017.

R. A. Renaut, A. Helmstetter, and S. Vatankhah.

Convergence of regularization parameters for solutions using the filtered truncated singular value decomposition.

http://arxiv.org/abs/1809.00249, 2018. Submitted.

Arvind K. Saibaba.

Analysis of randomized subspace iteration: Canonical angles and unitarily invariant norms. http://arxiv.org/abs/1804.02614.