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Simple ll-Posed Problem: Image Restoration

Naive Solution

Mildly ill-posed problem: Slow decay of singular values. SNR 13




Notation: Spectral Decomposition of the Solution: The SVD

Consider general discrete problem
Ax=b, AcR"™" beR"™ xecR"
Singular value decomposition (SVD) of A rank r < min(m,n)
A=UxvT = Z uiaiviT, Y = diag(o1,...,00).
=1

Singular values o;, singular vectors u;, v;, rank r.
Expansion for the solution:

r
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Regularization: Filtering and Truncation

Truncated SVD of size i gives best rank % approximation to A.
Surrogate model is given by A, ~ U, %, V..
Filtered and Truncated solution

X = vi(«@) S v;

i=1

k

Filter Factor ~;(«) (v; = 0 when i > k)
Regularization parameters :

» truncation £ - find the size for the surrogate
model.

» regularization parameter « for the hybrid
surrogate.



Regularization Parameter Estimation: Find a°P* to minimize F(«)

Filter function ~;(«) and complement ¢;(«).
2

o(a) = QQOTUZQ =1—vy(a),i=1:r¢;,=1,1> k.
Unbiased Predictive Risk : Minimize functional, noise level »?

Z@ s} —27722@

GCV : Minimize rational function, m* = min{m, n}

(2 ¢2(e)s?)

G(a) =
(o)’

How does a°P' = argmin F'(«) depend on £?




Convergence «;. with & for GCV and UPRE: Examples Restore Tools

Different noise levels: GCV and UPRE

Grain Satellite
Mildly lll-Posed Moderately Illl-Posed
ai:g‘rT,lgrgl or=CT,T>1

Grain size 128 . Satellite size 128
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ay, converges with & and depends on noise level.
Supports use of truncated SVD as surrogate




Theory: Assumptions

Assumptions (Normalization)
The system is normalized so that we may assume o; = 1.

Assumptions (Decay Rate)

The measured coefficients s; decay according to

sil? =02 > 62 for0 < v < 1,1 < i < ¢, i.e. the dominant
measured coefficients follow the decay rate of the exact
coefficients.

Assumptions (Noise in Coefficients)

There exists ¢ such that E(|s;|?) = o2 for alli > ¢, i.e. that the
coefficients s; are noise dominated fori > ¢.



Theorems on Convergence of ;. for UPRE [RHV18]

Theorem
Suppose Assumptions 2 and 3, and that Uy («y,) is @ minimum

for Uy(a). Then oy, > g > op11/4/1 — aéJrl = quin fork > ¢.
Theorem

Suppose the decay rate and noise assumptions, and that o.°Pt,
and each o, k > ( are unique on o1 /\/1 — 07, < a <1.
Then

» {a}k>¢ IS on the average increasing with
limy_,, E(ay) = E(aPY).

» {Ux(a)} is increasing.

\ Theory can be used to estimate % and oy




Comparing Automatic Parameter Estimates by TSVD and SVD
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Figure: Box plots comparing parameter estimates o, with a°P* for
problem Satellite computed from 100 runs for noise levels 1%,
5%, and 10%.

Robust algorithm verifies choice of i and «;. with increasing %




Comparing Automatic Relative Errors TSVD and SVD
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Figure: Box plots comparing relative errors using estimated % and «;
for Full and Truncated SVD: for problem satellite computed from
100 runs for noise levels 1%, 5%, and 10%.

Surrogate found automatically and error is less than full space




Truncated Singular Value Decomposition as surrogate for A

Remark (Observations for UPRE)

1. Find «,. for surrogate model TSVD A, = Uk,Ek,VkT with k
terms.

2. Determine optimal k: as o, converges to o°P*

3. With UPRE for large enough k the full problem is
regularized: i.e. () ~ 0 fori > k.

Remark (Extending to Large Scale)

» The TSVD for large problems is not feasible?

» Use iterative methods, randomized SVD to find the
surrogate model of A.



Large Scale - Hybrid LSQR: Given / defines range space

LSQR Let g1 := ||b||2, and egkﬂ) first column of I,
Generate, lower bidiagonal B, € R*t1*% column
orthonormal H;.; € R™*¢+D |G, e <k

AG), = Hy41 By, B1Hk‘+1e§k+1) =b.
Projected Problem on projected space: (standard Tikhonov)
wi(Gr) = argin | Biw — fref' "B + ¢lwiB)-

Projected Solution depends on (P Let B, = UXVT

k+1 e T (k+1)
(Copt) Grwi( = B1Gy Z% Opt 61' v;
k T k
opty 0y (H b)) o
=3P T G = S 2
i=1 i=1

Approximate SVD: A, = (H,.,U)3(G,V)T




Hybrid Randomized Singular Value Decomposition : Proto [HMT11]

A e R™*™ target rank k, oversampling parameter p,
k4 p < m. Power factor . Compute A ~ A, = U,E,V?

AN

6.

. Generate a Gaussian random matrix € R"*(k+p),
Compute Y = AQ € R™*+P) Y — orth(Y)

If ¢ > 0 repeat ¢ times {Y A(ATY), Y = orth(Y)}. Power
Form B=YTA e RE+tr)n (Q =)

Economy SVD B = UgXgV}, Ug € RUE+P)x(ktp),

V c kak

=QUB(:,1:k), Vi =Vp(:,1: k), S, =%p(1:k1:k)
PrOJected RSVD Problem
xi(j) = argmin{]A,x — b3 + i 1[I}
XERF

k —T k —
ub_ | Si__
> () =i = D i) =V

(2 (2

i=1 - =1

Approximate SVD 4, = U3,V




Summary Comparisons : rank & approximation of A

RSVD and LSQR provide approximate TSVD (see references)

TSVD LSQR RSVD
Model Ak A;‘. Zk
SVD U.xvr (Hep OZ(G)T TR VLT
Terms k k k
si u’b (Hy1U) b a'b
BaSiS V; (Gl\‘zs)z V;
Coeff Vi) 3 7%i(Cr) E(Grv)s Vi(h) 295
[ Oht1 Theorem A, Theorem A,
sin((Vi, Vx)) | Golub [GvL96] Jia [Jial7] Saibaba [Sai]

\ Accuracy depends on the surrogate model? \




Relative Errors using Approximate LSQR/RSVD with oversampling

o Relative Errors
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Hybrid LSQR: LSQR with regularization

Relative Errors for Regularized Solutions
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Hybrid RSVD: RSVD with regularization

Relative Errors for Regularized Solutions q = 2
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Questions to address

Both algorithms show semi-convergence.
But what is happening with RSVD accuracy?
Why is OS for LSQR effective?

Relation of oy, (i, 1.

Can automatic algorithm be applied

o~ w0~

Investigate the surrogate approximation for RSVD and LSQR




Contrasting RSVD and LSQR spectrum : Mildly lll-posed

Figure: RSVD: Good Approximation of Dominant Singular Values for
a problem of size 4096 x 4096 using the RSVD algorithm using 100%
oversampling, as compared to the exact singular values of the
problem.
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Contrasting RSVD and LSQR spectrum : Mildly lll-posed

Figure: LSQR: Good Approximation of fewer dominant singular
values for a problem of size 4096 x 4096 using the LSQR algorithm
with a Krylov subspace of size k£, as compared to the exact singular
values of the problem.
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Contrasting RSVD and LSQR spectrum : Mildly lll-posed

Figure: LSQR: Good Approximation of fewer dominant singular
values for a problem of size 4096 x 4096 using the LSQR algorithm
with a Krylov subspace of size k£, as compared to the exact singular
values of the problem. Oversampled 100%
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The LSQR / RSVD spectrum

» The Lanczos algorithm provides good estimates of
extremal singular values

» LSQR exhibits semi-convergence as a result.
» LSQR interior eigenvalue approximations improve with
increasing k - approximations stabilize with increasing k.

» RSVD approximates dominant singular values, does not
capture ill-conditioning.



Contrast RSVD-LSQR: singular space approximation -with / without OS

Figure: Rank % approximation error RSVD Power with ¢ = 2
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Contrast RSVD-LSQR: singular space approximation -with / without OS

Figure: Rank % approximation error RSVD ¢ = 2 and OS LSQR
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Contrasting Subspace Canonical Angles : Mildly lll-posed

Figure: RSVD: The canonical angles increase exponentially for
subspace j to subspace k from 4096 x 4096 using the RSVD
algorithm and decrease with OS: Example Size & = 400
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Contrasting Subspace Canonical Angles : Mildly lll-posed

Figure: RSVD with power iteration 2: The canonical angles increase
exponentially for subspace j to subspace k from 4096 x 4096 using
the RSVD algorithm and decrease with OS: Example Size k£ = 400
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Contrasting Subspace Canonical Angles : Mildly lll-posed

Figure: LSQR: The canonical angles increase after some subspace
size j* to subspace k from 4096 x 4096 using the RSVD algorithm:
Example Size k = 400
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IMPACT: V Basis Matrices (2D)- Lower basis vectors

LSQR

RSVD
k =100 p = 100%
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IMPACT: V Basis Matrices (2D)- Lower basis vectors

LSQR RSVD
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Observations: LSQR and RSVD

LSQR : semi-convergence
OS LSQR : overcomes semi-convergence
RSVD has smaller rank % error than LS.

BUT RSVD does not capture the subspace of rank & from
a k + p estimate as well as LSQR - canonical angles are
larger.

5. Plots of the basis support the reduced accuracy of the
RSVD subspaces

Ao~

Restored solutions at optimal k& = 750, 50 for RSVD, LSQR, resp.




Restored Regularized Solutions noise level with SNR = 13

Figure: LSQR k = 50
k=50 p=0%




Restored Regularized Solutions noise level with SNR = 13

Figure: RSVD k = 50
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Restored Regularized Solutions noise level with SNR = 13

Figure: LSQR k = 750
k=750 p=0%




Restored Regularized Solutions noise level with SNR = 13

Figure: RSVD k = 750
k=750 p=0% q=2 k=750 p=10% =2




Overview Conclusions

Dominant Subspace Finding dominant singular space of model
matrix is important: Oversampling

RSVD / LSQR Trade offs depend on speed by which singular
values decrease (degree of ill-posedness)

Cost While LSQR costs more per iteration, provides the
dominant subspace more accurately for ~ small.

Hybrid Implementations stabilize the solution errors.

Future Investigate transfer of noise to the RSVD
subspace - apparently inaccurate.



Relevance to Data Science

Remark (Messages of the Analysis)

v

SVD plays a role in analysis of large datasets?
Impact of approximating the spectrum by surrogates?

v

v

Important to understand impact of noise on spectrum

v

Important to analyze the methods
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