
Cluster Extraction using Sparse Recovery

Ming-Jun Lai and Daniel Mckenzie
Department of Mathematics, University of Georgia

Why Consider Cluster Extraction?

•Given a graph G = (V,E), finding clusters C1, C2, . . . , Ck ⊂ V is of interest in data
science. Each Ci should have many internal edges, few edges to rest of graph. It is natural
to assume that vertices in the same cluster share important properties.

• Typical algorithms (spectral clustering, GenLouvain, hierarchical clustering) assume that
C1, . . . , Ck do not overlap and V = C1 ∪ . . . ∪ Ck, but real-world graphs are more
complicated.

•Would like to allow for overlapping clusters, as well as for background vertices that do not
belong to any cluster.

•Real-world graphs are also large. If one is only interested in a certain cluster (e.g. the
community containing a specified user in a social network) it can be computationally
wasteful to find all clusters.

Definition 1 (Cluster Extraction Problem)Given a graph G = (V,E) and a small

set of seed vertices Γ ⊂ V , find a good cluster C1 containing Γ.

Cluster extraction is agnostic about structure of V \C1. Could be background, other clusters
etc.

Figure 1: The college football network of [1]. Clusters (indicated by color) corre-
spond to the different conferences. There are five teams, indicated in black, that are
independents and should not be assigned to any cluster.

Totally Perturbed Sparse Recovery

For x∗ ∈ R
n, let ‖x∗‖0 := |{i : x∗i 6= 0}|. If ‖x∗‖0 is small relative to n, we say that x∗

is sparse. Given y = Φx∗ and Φ ∈ R
m×n seek to recover x∗ as sparsest solution to linear

system y = Φx. Formally:

argmin ‖x‖0 such that Φx = y (1)

In compressed sensingm < n so the linear system is underdetermined. Problem (1) is highly
non-convex, so either study the convex relaxation (ℓ1 minimization) or use greedy approach
to solve:

argmin ‖Φx− y‖2 such that ‖x‖0 ≤ s := ‖x∗‖0 (2)

Herman & Strohmer [2], Li [4] and others, study problem (2) in presence of additive and multi-

plicative noise. That is, suppose y = (Φ+M)x∗+ e and x# is the solution to (2) found using,
e.g. subspace pursuit or OMP. Is x# ≈ x∗?
Theorem 2 (Cor. 1 in [4], simplified) Let Φ̂ = Φ +M and ŷ = Φ̂x∗ where ‖x∗‖0 = s.
Suppose that signal y = ŷ + e is received. Define

ǫy := ‖e‖2/‖ŷ‖2 and ǫΦ := ‖M‖2→2/‖Φ‖2→2

Let x# denote the solution to the following problem, found using subspace pursuit:

argmin ‖Φx− y‖2 such that ‖x‖0 ≤ s (3)

Assuming δ3s := δ3s(Φ) ≤ 0.4859 then:

‖x∗ − x#‖2 ≤ C(δs, ǫΦ, ǫy)‖x
∗‖2 (4)

Turning Cluster Extraction into Sparse Recovery

L = I − D−1A denotes the (normalized) Laplacian of G. Let Lin denote the Laplacian of
Gin ⊂ G where Gin is obtained by deleting all edges between clusters. Note that clusters
C1, . . . , Ck of G are now connected components of Gin.

If 1Ca
denotes the indicator vector of Ca, then a theorem in spectral graph theory states that

Lin1Ca
= 0. Importantly, note that ‖1Ca

‖0 = |Ca| =: na hence if |Ca| is small relative to |V |,
1Ca

is sparse. Assume, wlog, that v1 ∈ C1. We can find 1C1
as solution to:

argmin ‖Linx‖2 subject to ‖x‖0 ≤ n1 and x1 = 1 (5)

Of course Lin is unknown. In [3] we show that L = Lin +M with ‖M‖2→2 small. One would
hope that if x# is the solution to:

argmin ‖Lx‖2 subject to ‖x‖0 ≤ n1 and x1 = 1 (6)

Then by Theorem 2 x# ≈ 1C1
. Unfortunately problem (6) turns out to be poorly conditioned.

Thus we first use the seed vertices Γ ⊂ C1 to find a rough approximation Ω ⊃ C1 and then solve
a related sparse recovery problem to extract C1 from Ω.

Semi-Supervised Cluster Pursuit (SSCP) [3]

1. Input: Adjacency matrix A, Γ ⊂ C1 and n̂1 ≈ |C1|

2. Compute L+ = I +D−1A and b =
∑

i∈Γ

ℓ+i .

3. Let v = (L+
Γc)

⊤b

4. Define Ω = {i : vi among 1.1n̂1 largest entries in v} ∪ Γ

5. Compute L = I −D−1A and y =
∑

i∈Ω

ℓi

6. Find x# as the solution to argmin {‖LΩx− y‖2 : ‖x‖0 ≤ 0.1n̂1}

7. Let W# = {i : x
#
i > 0.5}

8.Output: C
#
1 = Ω \W#, an approximation to C1

Remark 3 In step 6 we use subspace pursuit to take advantage of Theorem 2. Using other

sparse recovery algorithms is certainly possible.

Theoretical Guarantees

We consider graphs drawn from the Symmetric Stochastic Block Model, G ∼ SSBM(n, k, p, q),
where G has k disjoint, equally sized clusters: V = C1 ∪ . . . ∪ Ck and edge {vi, vj} inserted
with probability p if vi, vj ∈ Ca and q if vi ∈ Ca and vj ∈ Cb for a 6= b. Here |V | = n so
|Ca| = n/k. Using Theorem 2 we prove:

Theorem 4 ([3]) Suppose G ∼ SSBM(n, k, p, q) with k constant, q = log(n)/n and p =

ω log(n)/n for any ω → ∞. Let C
#
1 be the output of SSCP with inputs A, Γ ⊂ C1 where

|Γ| = g|C1| for any fixed g ∈ (0, 1) and n̂1 = |C1|

1.
|C

#
1 \ C1| + |C1 \ C

#
1 |

|C1|
= o(1) almost surely

2. SSCP find C
#
1 in O(n log3(n)) operations.

Numerical Results

We compared the performance of SSCP against several state-of-the-art cluster extraction methods

(Tables 1–3). Full experimental details are contained in [3]. Jaccard := |C
#
1 ∩ C1|/|C

#
1 ∪ C1|.

SSCP HKGrow LOSP++ ESSC

Jaccard Time Jaccard Time Jaccard Time Jaccard Time

n = 1000 0.73 0.01 0.34 0.02 0.66 0.03 0.79 0.32
n = 2000 0.85 0.04 0.84 0.01 0.78 0.01 0.70 1.21

n = 3000 0.88 0.08 1 0.02 0.81 0.05 0.80 2.34
n = 4000 0.92 0.22 1 0.03 0.84 0.1 0.99 2.49

n = 5000 0.94 0.34 1 0.03 0.87 0.13 0.94 6.6

Table 1: Results for G ∼ SSBM(n, 10, p, q) with p and q as in Theorem 4.

SSCP HKGrow LOSP++ ESSC

Jaccard Time Jaccard Time Jaccard Time Jaccard Time

Caltech 0.43 0.01 0.27 0.004 0.38 0.01 0.43 3.72

Smith 0.33 0.02 0.06 0.02 0.31 0.04 - -

Rice 0.39 0.14 0.43 0.03 0.42 0.10 - -

UCSC 0.28 0.35 0.16 0.04 0.28 0.31 - -

Table 2: Results for four social networks from the facebook100 data set. Quantities displayed
are averaged over ten independent trials per cluster and over all clusters.

SSCP HKGrow LOSP++

Jaccard Time Jaccard Time Jaccard Time

1% 0.80 3.11 0.63 0.05 0.67 0.93

2% 0.84 3.65 0.65 0.05 0.66 1.61
5% 0.90 3.65 0.75 0.06 0.75 3.48

Table 3: Results for 20 000 MNIST images, averaged over ten independent trials per digit and
over all ten digits. Amount of labeled data varied from 1% to 5%.

Concluding Remarks

• I am currently extending this approach to Dynamic Graphs: G = {G(1), . . . , G(T)}.

•All code available at: danielmckenzie.github.io

•Questions or comments? danmac29@uga.edu

References

[1] Girvan & Newman, Community structure in social and biological networks, (2002).

[2] Herman & Strohmer, General deviants: An analysis of perturbations in compressed sensing, (2010).

[3] Lai & Mckenzie, Semi-Supervised Cluster Extraction via a Compressive Sensing Approach arXiv preprint
arXiv:1808.05780 (2018).

[4] H. Li, Improved analysis of SP and CoSaMP under total perturbations, (2016).

