Why Consider Cluster Extraction?

- Given a graph $G=(V, E)$, finding clusters $C_{1}, C_{2}, \ldots, C_{k} \subset V$ is of interest in data science. Each C_{i} should have many internal edges, few edges to rest of graph. It is natural to assume that vertices in the same cluster share important properties.
- Typical algorithms (spectral clustering, GenLouvain, hierarchical clustering) assume that - ${ }^{(y p i c a l}$ algorithms (spectral clustering, GenLouvain, hierarchical clustering) assume that
C_{1}, \ldots, C_{k} do not overlap and $V=C_{1} \cup \ldots \cup C_{k}$, but real-world graphs are more
complicated.
- Would like to allow for overlapping clusters, as well as for background vertices that do not belong to any cluster.
- Real-world graphs are also large. If one is only interested in a certain cluster (e.g. the community containing a specified user in a social network) it can be computationally wasteful to find all clusters.

Definition 1 (Cluster Extraction Problem) Given a graph $G=(V, E)$ and a small set of seed vertices $\Gamma \subset V$, find a good cluster C_{1} containing Γ.
Cluster extraction is agnostic about structure of $V \backslash C_{1}$. Could be background, other clusters etc.

Figure 1: The college football network of [1]. Clusters (indicated by color) correFigure 1. The coilege football network of [1]. Clusters (indiated in color) corre-
spond to the different conferences. There are five teams, indicated independents and should not be assigned to any cluster.

Totally Perturbed Sparse Recovery

For $\mathbf{x}^{*} \in \mathbb{R}^{n}$, let $\left\|\mathbf{x}^{*}\right\|_{0}:=\left|\left\{i: x_{i}^{*} \neq 0\right\}\right|$. If $\left\|\mathbf{x}^{*}\right\|_{0}$ is small relative to n, we say that \mathbf{x}^{*} is sparse. Given $\mathbf{y}=\Phi \mathbf{x}^{*}$ and $\Phi \in \mathbb{R}^{m \times n}$ seek to recover \mathbf{x}^{*} as sparsest solution to linear system $\mathbf{y}=\Phi \mathbf{x}$. Formally:

$$
\operatorname{argmin}\|\mathbf{x}\|_{0} \text { such that } \Phi \mathbf{x}=\mathbf{y}
$$

In compressed sensing $m<n$ so the linear system is underdetermined. Problem (1) is highly non-convex, so either study the convex relaxation (ℓ_{1} minimization) or use greedy approach to solve:
$\operatorname{argmin}\|\Phi \mathbf{x}-\mathbf{y}\|_{2}$ such that $\|\mathbf{x}\|_{0} \leq s:=\left\|\mathbf{x}^{*}\right\|_{0}$

Herman \& Strohmer [2], Li [4] and others, study problem (2) in presence of additive and multi plicative noise. That is, suppose $\mathbf{y}=(\Phi+M) \mathbf{x}^{*}+\mathbf{e}$ and $\mathbf{x}^{\#}$ is the solution to (2) found using, plicative noise. That is, suppose $\mathbf{y}=(\Phi+$
$e . g$. subspace pursuit or OMP. Is $\mathbf{x}^{\#} \approx \mathbf{x}^{*}$?
Theorem 2 (Cor. 1 in [4], simplified) Let $\hat{\Phi}=\Phi+M$ and $\hat{\mathbf{y}}=\hat{\Phi} \mathbf{x}^{*}$ where $\left\|\mathbf{x}^{*}\right\|_{0}=s$, Suppose that signal $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{e}$ is received. Define

$$
\epsilon_{\mathrm{y}}:=\|\mathbf{e}\|_{2} /\|\hat{\mathbf{y}}\|_{2} \text { and } \epsilon_{\Phi}:=\|M\|_{2 \rightarrow 2} /\|\Phi\|_{2 \rightarrow 2}
$$

Let $\mathbf{x}^{\#}$ denote the solution to the following problem, found using subspace pursuit:

$$
\operatorname{argmin}\|\Phi \mathbf{x}-\mathbf{y}\|_{2} \text { such that }\|\mathbf{x}\|_{0} \leq s
$$

Assuming $\delta_{3 s}:=\delta_{3 s}(\Phi) \leq 0.4859$ then
$\left\|\mathbf{x}^{*}-\mathbf{x}^{\#}\right\|_{2} \leq C\left(\delta_{s}, \epsilon_{\Phi}, \epsilon_{\mathbf{y}}\right)\left\|\mathbf{x}^{*}\right\|_{2}$
(4)

Turning Cluster Extraction into Sparse Recover

$L=I-D^{-1} A$ denotes the (normalized) Laplacian of G. Let $L^{\text {in }}$ denote the Laplacian of $G^{\text {in }} \subset G$ where $G^{\text {in }}$ is obtained by deleting all edges between clusters. Note that clusters $G^{1 \mathrm{I}} \subset G$ where $G^{\text {in }}$ is obtained by deleting all edges
C_{1}, \ldots, C_{k} of G are now connected components of G^{Im}.

If $\mathbf{1}_{C_{a}}$ denotes the indicator vector of C_{a}, then a theorem in spectral graph theory states that $L^{\text {in }} \mathbf{1}_{C_{a}}=0$. Importantly, note that $\left\|\mathbf{1}_{C_{a}}\right\|_{0}=\left|C_{a}\right|=: n_{a}$ hence if $\left|C_{a}\right|$ is small relative to $|V|$, $\mathbf{1}_{C_{a}}$ is sparse. Assume, wlog, that $v_{1} \in C_{1}$. We can find $\mathbf{1}_{C_{1}}$ as solution to

$$
\operatorname{argmin}\left\|L^{\text {in }} \mathbf{x}\right\|_{2} \text { subiect to }\|\mathbf{x}\|_{0}<n_{1} \text { and } x_{1}=1
$$

hope that if $\mathbf{x}^{\#}$ is the solution to

$$
\operatorname{argmin}\|L \mathbf{x}\|_{2} \text { subject to }\|\mathbf{x}\|_{0} \leq n_{1} \text { and } x_{1}=1
$$

Then by Theorem $2 \mathbf{x}^{\#} \approx \mathbf{1}_{C_{1}}$. Unfortunately problem (6) turns out to be poorly conditioned. Thus we first use the seed vertices $\Gamma \subset C_{1}$ to find a rough approximation $\Omega \supset C_{1}$ and then solve a related sparse recovery problem to extract C_{1} from Ω.

Semi-Supervised Cluster Pursuit (SSCP) [3]

1. Input: Adjacency matrix $A, \Gamma \subset C_{1}$ and $\hat{n_{1}} \approx \mid C_{1}$
2. Compute $L^{+}=I+D^{-1} A$ and $\mathbf{b}=\sum_{i \in \Gamma} \ell_{i}^{+}$
3. Let $\mathbf{v}=\left(L_{\Gamma c}^{+}\right)^{\top} \mathbf{b}$
4. Define $\Omega=\left\{i: v_{i}\right.$ among 1.1 \hat{n}_{1} largest entries in $\left.\mathbf{v}\right\} \cup \Gamma$ 5. Compute $L=I-D^{-1} A$ and $\mathbf{y}=\sum_{i \in \Omega} \ell_{i}$
5. Find $\mathbf{x}^{\#}$ as the solution to $\operatorname{argmin}\left\{\left\|L_{\Omega} \mathbf{x}-\mathbf{y}\right\|_{2}:\|\mathbf{x}\|_{0} \leq 0.1 \hat{n}_{1}\right\}$ 7. Let $W^{\#}=\left\{i: x_{i}^{\#}>0.5\right\}$
6. Output: $C_{1}^{\#}=\Omega \backslash W^{\#}$, an approximation to C

Remark 3 In step 6 we use subspace pursuit to take advantage of Theorem 2. Using other sparse recovery algorithms is certainly possible.

Theoretical Guarantees

We consider oraphs drawn from the Symmetric Stochastic Block Model $G \sim$ SSBM where G has k disioint, equally sized clusters: $V=C_{1} \cup \quad \cup C_{k}$ and edge $\left\{v_{i}, v_{j}\right\}$ inserted where G has k disjoint, equally sized clusters: $V=C_{1} \cup \ldots C_{k}$ and edge $\left\{v_{i}, v_{j}\right\}$ inserted
with probability p if $v_{i}, v_{j} \in C_{a}$ and q if $v_{i} \in C_{a}$ and $v_{j} \in C_{b}$ for $a \neq b$. Here $|V|=n$ so $\left|C_{a}\right|=n / k$. Using Theorem 2 we prove:
Theorem 4 ([3]) Suppose $G \sim \operatorname{SSBM}(n, k, p, q)$ with k constant, $q=\log (n) / n$ and $p=$ $\omega \log (n) / n$ for any $\omega \rightarrow \infty$. Let $C_{1}^{\#}$ be the output of $S S C P$ with inputs $A, \Gamma \subset C_{1}$ where $|\Gamma|=g\left|C_{1}\right|$ for any fixed $g \in(0,1)$ and $\hat{n}_{1}=\left|C_{1}\right|$

1. $\frac{\left|C_{1}^{\#} \backslash C_{1}\right|+\left|C_{1} \backslash C_{1}^{\#}\right|}{\left|C_{1}\right|}=o(1) \quad$ almost surely
2. SSCP find $C_{1}^{\#}$ in $O\left(n \log ^{3}(n)\right)$ operations.

We compared the performance of SSCP against several state-of-the-art cluster extraction method (Tables 1-3). Full experimental details are contained in [3]. Jaccard :=|C| $C_{1}^{\#} \cap C_{1}\left|/\left|C_{1}^{\#} \cup C_{1}\right|\right.$.

Table 1: Results for $G \sim \operatorname{SSBM}(n, 10, p, q)$ with p and q as in Theorem 4

```
Maccul
```

Table 2: Results for four social networks from the facebook100 data set. Quantities displayed are averaged over ten independent trials per cluster and over all clusters.

Table 3: Results for 20000 MNIST images, averaged over ten independent trials per digit and over all ten digits. Amount of labeled data varied from 1% to 5%.

- I am currently extending this approach to Dynamic Graphs: $\mathbb{G}=\left\{G^{(1)}, \ldots, G^{(T)}\right\}$
- All code available at: danielmckenzie.github.io
- Questions or comments? danmac29@uga.edu

References

(1) Girvan \& Newman, Community structure in social and biological networks, (2002).
[2] Herman \& Strohmer, General deviants: An analysis of perturbations in compressed sensing, (2010). [3] Lai \& Mckenzie, Semi-Supervised Cluster Extraction via a Compressive Sensing Approach arXiv prepriit
arXivivi 1808.05780 (2018). arXiv:1808.05780 (2018). 41 H. Li. Improved analysis of SP and CoSaMP under total perturbations, (2016).

