Why Consider Cluster Extraction?

e Given a graph G = (V, F), finding clusters C7,C9,...,C). C V is of interest in data
science. Each C; should have many internal edges, few edges to rest of graph. It is natural
to assume that vertices in the same cluster share important properties.

e Typical algorithms (spectral clustering, GenLouvain, hierarchical clustering) assume that
C1,...,C do not overlap and V= C7 U ... U C}, but real-world graphs are more
complicated.

e Would like to allow for overlapping clusters, as well as for background vertices that do not
belong to any cluster.

e Real-world graphs are also large. If one is only interested in a certain cluster (e.g. the
community containing a specified user in a social network) it can be computationally
wastetul to find all clusters.

Definition 1 (Cluster Extraction Problem) Given a graph G = (V, E) and a small
set of seed vertices I' C'V, find a good cluster C'; containing I'.

Cluster extraction is agnostic about structure of V' \ C. Could be background, other clusters
etc.

FIGURE 1: The college football network of |1|. Clusters (indicated by color) corre-
spond to the different conferences. There are five teams, indicated in black, that are
independents and should not be assigned to any cluster.

Totally Perturbed Sparse Recovery

For x* € R", let ||x*||og := [{¢ : @7 # 0}|. If ||x¥||o is small relative to n, we say that x*
is sparse. Given y = &x* and & € R"™*" gseek to recover x* as sparsest solution to linear
system y = &x. Formally:

argmin ||x||g such that &x =y (1)

In compressed sensingm < n so the linear system is underdetermined. Problem (1) is highly
non-convex, so either study the convex relaxation (¢ minimization) or use greedy approach
to solve:

argmin ||®x — y||o such that ||x||p < s := ||x"]|¢ (2)
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Herman & Strohmer [2], Li [4] and others, study problem (2) in presence of additive and multi-
plicative noise. That is, suppose y = (® 4+ M)x* + e and x7 is the solution to (2) found using,
e.g. subspace pursuit or OMP. Is x7 ~ x*?

Theorem 2 (Cor. 1 in [4], simplified) Let ® = ® + M and y = dx* where |x*|)o = s.
Suppose that signal y =y + e s received. Define

ey .= |lell2/]|¥ |2 and ep = || M ||a—2/||P|l2—2

Let x# denote the solution to the following problem, found using subspace pursuit:
argmin ||®x — y|la such that ||x||p < s (3)

Assuming 035 := 035(P) < 0.4859 then:

Ix* — x7||o < C (05, €0, €)X 12 (4)

Turning Cluster Extraction into Sparse Recovery

L =1- DA denotes the (normalized) Laplacian of G. Let L™ denote the Laplacian of
G"™ C G where G is obtained by deleting all edges between clusters. Note that clusters
C'1,...,Ch of G are now connected components of G™.

If 1¢ denotes the indicator vector of Cg, then a theorem in spectral graph theory states that
L"™1e = 0. Importantly, note that ||1¢ ||g = |Ca| =: ng hence if |Cy| is small relative to |V,
1¢ s sparse. Assume, wlog, that v; € €. We can find 1, as solution to:

argmin ||L"x|[ subject to ||x|lg < nq and 21 = 1 (5)

Of course L™ is unknown. In [3] we show that L = L™ + M with || M]|o—5 small. One would
hope that if x7 is the solution to:

argmin ||Lx||9 subject to ||x]|g < nj and 21 =1 (6)

Then by Theorem 2 X7 A 1¢,. Unfortunately problem (6) turns out to be poorly conditioned.
Thus we first use the seed vertices I' C (' to find a rough approximation {2 O ('] and then solve
a related sparse recovery problem to extract C'7 from ().

Semi-Supervised Cluster Pursuit (SSCP) [3]

1. Input: Adjacency matrix A, I' C C and n; =~ |C]|
2. Compute LT =T+ D 1A and b = Zf;r

el
3. Let v = (LFC)Tb
4. Define €2 = {i : v; among 1.1nq largest entries in v} U
5. Compute L=1— D tAandy = Z&-

1€f)

6. Find x™ as the solution to argmin {||Lox — yll2 : [|x[|o < 0.1}
7.Let W# = {i : xfﬁ > (0.5}

8. Output: C# =Q\ W#, an approximation to C'

Remark 3 In step 6 we use subspace pursuit to take advantage of Theorem 2. Using other
sparse recovery algorithms is certainly possible.

Theoretical Guarantees

We consider graphs drawn from the Symmetric Stochastic Block Model, G ~ SSBM(n, k, p, q),
where G has k disjoint, equally sized clusters: V' = C7 U ... U C) and edge {v;,v;} inserted

with probability p if v;,v; € Cq and q if v; € Cy and v; € Cj for a # b. Here |V| = n so
|Cy| = n/k. Using Theorem 2 we prove:

Theorem 4 ([3]) Suppose G ~ SSBM(n, k,p,q) with k constant, ¢ = log(n)/n and p =
wlog(n)/n for any w — oo. Let C# be the output of SSCP with inputs A, I' C Cy where
| = g|C1| for any fized g € (0,1) and ny = |C4]

ci\al+le\ et
1. = o(1)
(&1

almost surely

2. SSCP find C# in O(nlog’(n)) operations.

Numerical Results

We compared the performance of SSCP against several state-of-the-art cluster extraction methods
(Tables 1-3). Full experimental details are contained in [3]. Jaccard := \C’# NCh|/ ]C’# Uil

SSCP HKGrow LOSP++ ESSC
Jaccard Time Jaccard Time Jaccard Time Jaccard Time
n=1000 0.73 0.01 0.34 0.02 0.66 0.03 0.79 0.32
n = 2000 0.85 0.04 0.84 0.01 0.78 0.01 0.70 1.21

n = 3000  0.88 0.08 1 0.02 0.81 0.05 0.80 2.34
n = 4000  0.92 0.22 1 0.03 0.84 0.1 0.99 2.49
n = 5000  0.94 0.34 1 0.03 0.87 0.13 0.94 6.6

Table 1: Results for G ~ SSBM(n, 10, p, q) with p and ¢ as in Theorem 4.

SSCP HKGrow LOSP++ ESSC
Jaccard Time Jaccard Time Jaccard Time Jaccard Time
Caltech  0.43 0.01 0.27 0.004 0.38 0.01 0.43 3.72
Smith 0.33 0.02 0.06 0.02 0.31 0.04 -
Rice 0.39 0.14 0.43 0.03 0.42 0.10
UCsC 0.28 0.35 0.16 0.04 0.28 0.31

Table 2: Results for four social networks from the facebook100 data set. Quantities displayed
are averaged over ten independent trials per cluster and over all clusters.

SSCP HKGrow LOSP++
Jaccard Time Jaccard Time Jaccard Time
1%  0.80 3.11 0.63 0.05 0.67 0.93
2%  0.84 3.65 0.65 0.05 0.66 1.61
5%  0.90 3.65 0.75 0.06 0.75 3.48

Table 3: Results for 20 000 MNIST images, averaged over ten independent trials per digit and
over all ten digits. Amount of labeled data varied from 1% to 5%.

Concluding Remarks

e | am currently extending this approach to Dynamic Graphs: G = {G(1>, e G<T>}.
e All code available at: danielmckenzie.github.io

e Questions or comments? danmac29@uga.edu

References

1] Girvan & Newman, Community structure in social and biological networks, (2002).

2] Herman & Strohmer, General deviants: An analysis of perturbations in compressed sensing, (2010).

3] Lai & Mckenzie, Semi-Supervised Cluster Extraction via a Compressive Sensing Approach arXiv preprint
arXiv:1808.05780 (2018).

[4] H. Li, Improved analysis of SP and CoSaMP under total perturbations, (2016).



