

CLUSTER EXTRACTION USING SPARSE RECOVERY

Ming-Jun Lai and **Daniel Mckenzie** Department of Mathematics, University of Georgia

Herman & Strohmer [2], Li [4] and others, study problem (2) in presence of *additive* and *multiplicative* noise. That is, suppose $\mathbf{y} = (\Phi + M)\mathbf{x}^* + \mathbf{e}$ and $\mathbf{x}^{\#}$ is the solution to (2) found using, e.g. subspace pursuit or OMP. Is $\mathbf{x}^{\#} \approx \mathbf{x}^{*}$? Theorem 2 (Cor. 1 in [4], simplified) Let $\hat{\Phi} = \Phi + M$ and $\hat{\mathbf{y}} = \hat{\Phi} \mathbf{x}^*$ where $\|\mathbf{x}^*\|_0 = s$. Suppose that signal $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{e}$ is received. Define $\epsilon_{\mathbf{y}} := \|\mathbf{e}\|_2 / \|\hat{\mathbf{y}}\|_2 \text{ and } \epsilon_{\Phi} := \|M\|_{2 \to 2} / \|\Phi\|_{2 \to 2}$ Let $\mathbf{x}^{\#}$ denote the solution to the following problem, found using subspace pursuit: argmin $\|\Phi \mathbf{x} - \mathbf{y}\|_2$ such that $\|\mathbf{x}\|_0 \leq s$ Assuming $\delta_{3s} := \delta_{3s}(\Phi) \le 0.4859$ then: $\|\mathbf{x}^* - \mathbf{x}^{\#}\|_2 \le C(\delta_s, \epsilon_{\Phi}, \epsilon_{\mathbf{y}}) \|\mathbf{x}^*\|_2$ Turning Cluster Extraction into Sparse Recovery $L = I - D^{-1}A$ denotes the (normalized) Laplacian of G. Let L^{in} denote the Laplacian of $G^{\text{in}} \subset G$ where G^{in} is obtained by deleting all edges between clusters. Note that clusters C_1, \ldots, C_k of G are now connected components of G^{in} . If $\mathbf{1}_{C_a}$ denotes the *indicator vector* of C_a , then a theorem in spectral graph theory states that $L^{\mathrm{in}}\mathbf{1}_{C_a} = 0$. Importantly, note that $\|\mathbf{1}_{C_a}\|_0 = |C_a| =: n_a$ hence if $|C_a|$ is small relative to |V|, $\mathbf{1}_{C_a}$ is *sparse*. Assume, wlog, that $v_1 \in C_1$. We can find $\mathbf{1}_{C_1}$ as solution to: argmin $||L^{\text{in}}\mathbf{x}||_2$ subject to $||\mathbf{x}||_0 \le n_1$ and $x_1 = 1$ Of course L^{in} is unknown. In [3] we show that $L = L^{\text{in}} + M$ with $||M||_{2\to 2}$ small. One would hope that if $\mathbf{x}^{\#}$ is the solution to: argmin $||L\mathbf{x}||_2$ subject to $||\mathbf{x}||_0 \le n_1$ and $x_1 = 1$ Then by Theorem 2 $\mathbf{x}^{\#} \approx \mathbf{1}_{C_1}$. Unfortunately problem (6) turns out to be poorly conditioned. Thus we first use the seed vertices $\Gamma \subset C_1$ to find a rough approximation $\Omega \supset C_1$ and then solve a related sparse recovery problem to extract C_1 from Ω . Semi-Supervised Cluster Pursuit (SSCP) [3] 1. Input: Adjacency matrix $A, \Gamma \subset C_1$ and $\hat{n_1} \approx |C_1|$ 2. Compute $L^+ = I + D^{-1}A$ and $\mathbf{b} = \sum \ell_i^+$. 3. Let $\mathbf{v} = (L_{\Gamma^c}^+)^\top \mathbf{b}$ 4. Define $\Omega = \{i : v_i \text{ among } 1.1\hat{n}_1 \text{ largest entries in } \mathbf{v}\} \cup \Gamma$ 5. Compute $L = I - D^{-1}A$ and $\mathbf{y} = \sum \ell_i$ 6. Find $\mathbf{x}^{\#}$ as the solution to argmin { $\|L_{\Omega}\mathbf{x} - \mathbf{y}\|_2$: $\|\mathbf{x}\|_0 \le 0.1\hat{n}_1$ } 7. Let $W^{\#} = \{i : x_i^{\#} > 0.5\}$ 8. **Output:** $C_1^{\#} = \Omega \setminus W^{\#}$, an approximation to C_1 (1)

> **Remark 3** In step 6 we use subspace pursuit to take advantage of Theorem 2. Using other sparse recovery algorithms is certainly possible.

(2)

	Theoretical Guarantees				
We consider graphs drawn from where G has k disjoint, equall with probability p if $v_i, v_j \in G$ $ C_a = n/k$. Using Theorem 2	the Sym by sized closed C_a and q we prove	$\begin{array}{l} metric\\ usters:\\ \text{if } v_i \in\\ \end{array}$	Stochast $V = C_1$ C_a and	tic Block N $\cup \ldots \cup C$ $v_j \in C_b$	$Model C_k$ and for a
Theorem 4 ([3]) Suppose G $\omega \log(n)/n$ for any $\omega \to \infty$. $ \Gamma = g C_1 $ for any fixed $g \in$ 1. $\frac{ C_1^{\#} \setminus C_1 + C_1 \setminus C_1^{\#} }{ C_1 } = o(1)$	$F \sim SSB$ Let $C_1^{\#}$ is (0,1) and (1) alm	$M(n, k, be the orbit he he the orbit \hat{n}_1 = 0$	$p,q)$ with $putput$ of $ C_1 $ rely	th k const f SSCP wa	ant, ith in
2. SSCP find $C_1^{\#}$ in $O(n \log^3(n g^{1}))))))))))))))))))))))))))))))))))))$	n)) opera	tions.			
	Ν	umerica	al Results	3	
We compared the performance (Tables 1–3). Full experimentation $\frac{n = 1000}{n = 2000}$ n = 3000 n = 4000 n = 5000	of SSCP ag al details a <u>SSCP</u> Jaccard Time 0.73 0.01 0.85 0.04 0.88 0.08 0.92 0.22 0.94 0.34	gainst searce cont HKGro Jaccard 7 0.34 0.84 1 1 1 1	everal sta sained in w LOS Time Jaccard 0.02 0.66 0.01 0.78 0.02 0.81 0.03 0.84 0.03 0.87	te-of-the-a [3]. Jaccar P++ ES Time Jaccard 0.03 0.79 0.01 0.70 0.05 0.80 0.1 0.99 0.13 0.94	rt clurd := $rsc1.212.342.496.6$
Table 1: Results for	$G \sim \text{SSE}$	$\mathrm{SM}(n, 10)$	(0, p, q) w	ith p and q	q as in
Caltech Smith Rice UCSC	SSCPJaccardTime0.430.010.330.020.390.140.280.35	HKGrow Jaccard 7 0.27 0 0.06 0 0.43 0 0.16 0	Jaccard Jaccard 0.004 0.38 0.02 0.31 0.03 0.42 0.04 0.28	P++ ESS Time Jaccard 0.01 0.43 0.04 - 0.10 - 0.31 -	SC Time 3.72 - - -
Table 2: Results for four social are averaged over ten independent	l networks lent trials	s from t per clu	he face Ister and	oook100 d over all cl	ata s usters
Table 3. Regults for 20.000 Mi	SSCF Jaccard 1% 0.80 2% 0.84 5% 0.90	P H Time Jacc. 3.11 0.6 3.65 0.6 3.65 0.7	HKGrow ard Time Ja 53 0.05 (55 0.05 (75 0.06 (LOSP++ accard Time 0.67 0.93 0.66 1.61 0.75 3.48	opopo
over all ten digits. Amount of 1	labeled da	ata vari	ed from 1	1% to 5%.	ehen(

- All code available at: danielmckenzie.github.io
- Questions or comments? danmac29@uga.edu

References

- [1] Girvan & Newman, Community structure in social and biological networks, (2002).
- arXiv:1808.05780 (2018).
- [4] H. Li, Improved analysis of SP and CoSaMP under total perturbations, (2016).

 $l, G \sim \text{SSBM}(n, k, p, q),$ d edge $\{v_i, v_j\}$ inserted $\neq b$. Here |V| = n so

 $q = \log(n)/n$ and p =nputs $A, \Gamma \subset C_1$ where

ister extraction methods $= |C_1^{\#} \cap C_1| / |C_1^{\#} \cup C_1|.$

in Theorem 4.

set. Quantities displayed

dent trials per digit and

Concluding Remarks

• I am currently extending this approach to Dynamic Graphs: $\mathbb{G} = \{G^{(1)}, \ldots, G^{(T)}\}$.

[2] Herman & Strohmer, General deviants: An analysis of perturbations in compressed sensing, (2010). [3] Lai & Mckenzie, Semi-Supervised Cluster Extraction via a Compressive Sensing Approach arXiv preprint