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@ Conclusion and Future Work.

Blended Coarse Gradient (ICMDS) Nov, 2018 3 /30



Deep Learning

@ DNNs drive the recent Al advances suppassing human performance
(image/speech recognition, Alpha-Go) and big data research across
all scientific disciplines.

‘——. [ 1

o A T

O:=wpg*xo(wpx---o(wygxl)---), o =max(-,0), activation.

@ Require hundreds of megabytes of memory to store full-precision
floating-point weights (w1, wo, - --), and billions of FLOPs (floating
point operations per second) on a single forward pass (I to O).
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Quantization

@ A challenge to run DNN on mobile devices or other platforms with
limited resources.

@ An effective complexity reduction method is quantization:
Restrict weight and activation values to discrete and finite subsets.
o Network retraining is needed to maintain the same level of accuracy.

@ Resolving conflict:

discreteness of quantization
vs.

continuous nature of stochastic gradient descent (SGD).
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___ DNNand Quantimtion |
Weight Quantization

o Entries of weight matrix w; of dimension N(/) in each layer / are
constrained to values from the set:

Q = R+ X {:I:ql, :l:a q, - 7:l:qm}N(l)
a float precision scaling factor times signed quantized values:
0<qgi<q2<---<gm
o 1-bit (binarization): m=1, q; = 1.

@ 2-bit (ternarization): m=2, g1 =0, g2 = 1.

@ 4-bit linear quantization: m =8, q; = Jé, j=0,1,.--,8.
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DNN and Quantization

Projection: solving least squares problem

o Given matrix W, find:
projg(W) = argmin,cq|lz — W|? = s, - q.
(54, G«) = argmings g .qeqlls - 4 — WI.
@ Binarization (Rastegari, et al, 2016; complexity O(N)):
sy = [|[W|1/dim(W), q. = sign(W), sign(0) := 1.
o Ternarization (Yin, Zhang, Qi, X, 2016; complexity O(N log N)):
si = [[Wiell1/t", g« = sign(Wg+), sign(0) = 0,

o 2
b = argmaxj <+ <dim(W) [Wigll1/t,
Wly: keep t largest entries in magnitude, zero out the rest.
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DNN and Quantization

Projection: solving least squares problem

o At bit-width b, > 3, exact solutions are too expensive
computationally.
o lterative solutions by Lloyd algorithm: alternating between s-update
and g-update.
@ s-update:
T
(q(’)) w . () 2
——-—— = argmin s — Wi~
@ g-update: minimize component by component.
@ Practically, one step Lloyd: initialize s = ﬁ\\WHm find q € Q
componentwise to the least squares problem.
@ Errors in quantization can be corrected during network retraining.
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Activation Quantization (AQ)

@ Uniform AQ:
0, if x<0,
o(x,a) =< ka, if (k—1Da<x<ka, k=1:2b2_-1
(2 —1)a, if x> (2% -1)q,
x the scalar input, a > 0 the resolution, b, € Z the bit-width of
activation, k the quantization level.
o 4-bit (4A): b,=4 and k=1,2,--- ,15.
@ Sample loss function for training input Z and label u:
lw,a;{Z,u}) = lwpiyxo(wpx---kxwoko(wy*Z,aq) - ,qp); U)

w;: weights in j-th linear (fully-connected or convolutional) layer.

* — matrix-vector product or convolution. The j-th quantized RelLU
o(x;j, aj) acts element-wise on output x; from previous linear layer,
with a trainable scalar a; > 0.
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DNN and Quantization

Minimize Piecewise Constant Functions in High Dim

@ Given N training samples, minimize empirical risk with quantized

ReLU: N
gz (@)
rmrlncgfwa Z_: (w, o; {Z, u\"})
o Gradient calculated by chain rule involves: g—i (=0a.e.) and g—g.
14
(;\)NL =o(x,-1,1-1) © %(XL, ap) ow/ ;o VA(xii1; u)
ov 0o

g
(x,000) oW/ g 0 VE(xp11; )

0
(XL,1, Ckal) (e} WZ (e} a

804,1 B %
Xj = Wj * o(Xj_1,0j_1).
[—1
Jj=1-
@ Zero gradients by auto-diff on Pytorch, causing SGD to stagnate.

@ Zero gradients a.e. of £ in {wj} _, and {a;
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Walking Down a Hill of Terraces ?
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DNN and Quantization

Differentiate a Staircase Function over Large Scale

o “Large scale” derivative of quantized o (a staircase):

5 0, if x<0,
T (xa)m1,  if 0<x< (2% -1)a,
ox

0, if x>(2%-1)a

a non-zero value in the middle to reflect the overall variation of o. Or
the derivative of the step-back view of o in x.

@ Same as the derivative of the clipped ReLU (a ramp):
if x <0,

if 0<x<(2%—1)aq,

0,
F(x,a) = ¢ x,
(2 —1)a, if x> (22 -1)a.
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When a.e. partial derivative exists

@ but not the best in either classification accuracy or computational

cost:
5 0, if x<0,
872()(7@): ka if (k—l)Oé<X§kOé, k:1:2b9—]_;

2k -1, if x> (22 -1)
@ 3-valued “coarse” partial derivative in a:
0, if x <0,

%(X, a) &~ { 2ba—1 it 0<x< (2ba — 1) Q,
2ba—1,  if x> (22 —1)

The middle value 222=1 is the arithmetic mean of the intermediate k
values of the a.e. partial derivative above.
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DNN and Quantization

Coarse Gradients

@ 2-valued coarse partial derivative proposed in PACT '18 (using
straight-through estimator of Hinton '12, Bengio et al, '13), or simply

zero out all nonzero values except their maximum in a.e. g—g(x, a)
80( ) 0, if x< (21’a — 1) ,
—(x,a) =
da™’ 2ba—1,  if x> (22 —1)q,
@ exactly W(X,a).

@ Coarse gradients in action: substitute
1) coarse partials for « partial derivative,
2) clipped ReLU in x partial derivative

of the quantized o in the chain rule expressions of gradients.
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DNN and Quantization

Full Quantization Problem

o Layer-wise weight and activation quantization problem is:

W'S f(w,) subjectto we Q=Q1 x Q2+ X Qp41,
weight in j-th linear layer is constrained as w; = d;q; € Q; for some
adjustable scalar §; > 0. Each entry of q; is optimally drawn from the
quantization set given by {+ W% tk=0,1,---,2%71 1} for
b, > 2 and {£1} for b, = 1. Here b,, € Z is the bit-width for
weight quantization, d; a floating (32-bit) real number.

@ BinaryConnect weight update (Courbariaux et al, '15):

w,f-+1 =w}i —nVf(wh), witl = prqu(W)t;+1),

where {w'} is the sequence of quantized weights,
{w}} is an auxiliary sequence of floating weights.
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Blended Gradient Descent

@ Blend BinaryConnect and classical projected GD (for smooth
constraint):

PGD : wffl =w' —nVf(w'), w = projg(wit?)
BGD : wi™ = (1—p)wt +pw’ —nVF(w?), w = projg(wt™)

with parameter p < 1.

o If objective function f has L-Lipschitz gradient, then for p € (0,1), at
small enough learning rate n > 0, BGD satisfies the sufficient descent
property (SDP):

f(WtJrl) . f(wt) < —c Hwt+1 _ Wt”27

for some positive constant ¢ > 0, while BinaryConnect does not.
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BCGD and Experiment

Blended Coarse Gradient Descent

o In fully quantized network training (~= coarse):

atJrl

t+1
Wi
witl

al —n, Va f(wh, at),

(1 —p)wt + pw' — 1, V,, F(wt, ab),

projq(w

)

@ Two scale learning: 1, = 0.017,,.

a-learning much slower than w-learning.

o Blending parameter: p = 1075.

o Initialization: o' = 1/(2% — 1), n, = 107*,
Decay factor of learning rates: 0.1.

o Image Datasets: CIFAR-10, ImageNet.
@ PyTorch on 4 Nvidia GeForce GTX 1080 Ti GPUs.
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BCGD and Experiment

Experiment: a) Blending improves accuracy especially at
low precision. b) No need of a.e. derivative.

Network Float | 32W4A | IW4A | 2W4A | 4W4A
VGG-11 + BC 88.12 | 89.78 | 91.51
VGG-11+BCGD 92131 9174 88.74 | 90.08 | 91.38
ResNet-20 + BC 89.23 | 90.89 | 91.53

ResNet-20+BCGD 92.41 | 91.90 90.10 | 91.15 | 91.56

Table: CIFAR-10 validation accuracies in % with the a.e. a derivative.

Network Float | 32WA4A | 1W4A | 2WA4A | 4W4A
VGG-11 + BC 89.12 | 90.52 | 91.89
VGGe-1iiBcGD | 2213 | 9208 5959 19071 [ 91.70
ResNet-20 & BC 8037 | 91.02 | 9L.71

ResNet-20+BCGD | 2241 | 9214 9005 T 91.03 [ 91.97

Table: CIFAR-10 validation accuracies with the 3-valued « derivative.
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BCGD and Experiment

Experiment: a) 3-valued better than 2-valued do/da. b)
Network at (4W,4A) within 1 % of float network precision.

Network Float | 32W4A | TWA4A | 2W4A | 4W4A
VGG-11 + BC 80.12 | 90.52 | 91.89
VGGi11BCGD | 213 | 9298 8959 00.71 | 91.70
ResNet-20 + BC 8037 | 91.02 | 9171
ResNet-201BCGD | 2241 | 9214 5505 To1.03 [ 91.97

Table: CIFAR-10 validation accuracies with the 3-valued o derivative.

Network Float | 32W4A | 1W4A | 2WA4A | 4W4A
VGG-11 + BC 88.50 | 89.99 | 91.31
VGG 11iBcGD | 2213 | 9190 5913 9000 [ 9131
ResNet-20 + BC 80.22 | 90.64 | 91.37

ResNet20-BCGD | 2241 | 9173 3998 [00.75 | 91.65

Table: CIFAR-10 validation accuracies with the 2-valued o derivative.
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BCGD and Experiment

Experiment: Blending effects during training on ImageNet.
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Figure: ImageNet validation accuracies vs. number of epochs using 3-valued
a-derivative on 1W4A ResNet-18; with (orange) and without (blue) blending.
Top-1:

—— binary connect 62.98
blended GD 64.36

0 10 20 30 40 50 60 70 80

left. Top-5: right.

Blended Coarse Gradient (ICMDS)

86

72

—— binary connect 84.77

blended GD

0

10

20

30

40

50

60 70

Nov, 2018

80

20 / 30



BCGD and Experiment

Experiment: all convolution layers quantized on ImageNet.

Float 1WA4A 4W4A
3val | 2val | 3val | 2val | 3val | 2val
top-1 | 69.64 | 64.36 | 63.37 | 67.36 | 66.97 | 68.85 | 68.83
top-5 | 88.98 | 85.65 | 84.93 | 87.76 | 87.41 | 88.71 | 88.84

Table: ImageNet validation accuracies (%) with BCGD on ResNet-18. The

3-valued a-derivatives improve more on 2-valued in low bit regime.

o ImageNet: 1.2 million images for training and 50,000 for validation,

1,000 classes. Mini-batch size 256 and 80 epochs of training with

learning rate decay at epoch #50 and #70.

o CIFAR-10: 60,000 small color images of 10 classes. Split into 50,000
training and 10,000 validation. Mini-batch size 128 and 200 epochs
of training with learning rate decay at epoch #80 and #140.
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

@ Two-layer neural network model with binarized ReLU activation:

0 ifx<O0,
o(x) = )
1 if x>0.

Sample loss function:

Uv,w;Z) = % (VTJ(ZW) . (\,*)To—(zW>'<))2

v* € R™ and w* € R": prescribed nonzero * in
2nd and 1st layers. Gaussian input data: entries of Z € R™*" i.i.d.
sampled from unit Gaussian A/(0,1).

) f(v,w; Z) = K(V’W/C; Z), \V/ c>0. WLOG ”W*” =1.
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

@ Empirical risk minimization:

N
1 .
mi — .z
in N ;1 (v, w; ZV)

veR™ weR"

piecewise constant objective.
@ Population loss minimization:

min _ f(v,w) := Ez [{(v,w; Z)]

veR™ weR"

smoother objective (6(-,-) = angle between dots):

8r(vw) = v\ (14117 )v -2 ((1 _ 72T9(w,w*)> |+ 11T) v

+ ()T <I + 11T) v,
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

@ Lipschitz continuous gradients:

of _1 ™, L 2 . T *
aV(v,w)—4<l—|—11 )v 4<<1 7T@(w,w )>I+11 )v

of vV (| _ %) w* *
S (VW) = o] H (I - %) T VO(w,w*) € (0, ).

@ Possible locations for non-trivial local minimizers are:
@ Ciritical points where the gradients defined above vanish simultaneously
(may not be possible in general)

VTv* = O and Vv = (I —+ llT)il <<1 — 20(W,W*)> I + 11T> V*.
™

@ Non-differentiable points where 6(w,w*) =0 and v = v* (global
minimizer), or f(w,w*) = and v = (I + 117—)71 (117 — 1>,
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

@ Accessible gradients in training are finite sample approximations of:

Ez [gf(v,w; 2)] and Ez [gfl(v,w;Z)} :

e Formally by chain rule (gradient to w is a.e. 0):

gﬁ(v,w; Z)=o0(Zw) (ng(ZW) _ (V*)TO'(ZW*)> .
g‘f’(v,w; Z) =Z' (U/(ZW) ® V) <VTO'(ZW) _ (V*)TU(Zw*)>

@ Replace o/ by (sub)derivative p’ of regular ReLU function
p(x) := max(x,0), and define coarse gradient:

g(v,w;Z) :=2Z" (1/(Zw) © v) (VTU(ZW) - (v*)TJ(ZW*)) .
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

o Coarse gradient descent with weight normalization:

vitl =yt —nEz[ (vi,wt; Z)]

Wz = wh— 7 Ez [g(vh, w'; Z)]

t+1 wt+1/2

w — ”WH—I/2||

o Expected coarse gradient:

h(v,v*) w <9(w,w*)> vive Tap T W
— — COS
2421 ||wl] 2 V21 Hﬁ L
w

Ez[g(v,w;Z)] =

h(v,v*) := |lv[|? + (1Tv)2 — (1 Tv)(1Tv*) + v v

@ Critical point conditions and global minimizer are the same as those
of the population loss.
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

o Coarse partial gradient Ez [g(v, w; Z)] = 0 is well-defined at global
minimizer, v = v*, f(w,w*) = 0, of the population loss. In contrast,
the true gradient g—\z(v,w) does not exist.

Theorem (Positive Correlation)

If 0(w,w*) € (0,7) , and ||w|| # O, the inner product between the coarse
and true gradients w.r.t. w:

of sin (O(w, w*
(Selatowi2) 5 00) = it

(T*)2
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem
o

Theorem (Coarse Gradient Descent and Convergence to Global Minimizer)

Given the initialization (v, w®) with |wP|| = 1, and let {(vt,w?)} be the
sequence generated by the normalized coarse gradient descent algorithm.
There exists ng > 0, such that for any step size n <mno, {f(vi,wh)} is
monoton/cally decreasing, both HEZ [ (vi,wt; Z) }H and

I|Ez [g(vE, wt; Z)]|| converge to 0, as t — cc.

Morover, if the initialization (v°,w9) satisfies geometric conditions:

o(vO,v*) < 7, 6w, w*) < 5, and (1Tv*)(17v0) < (1Tv*)?, then
{(vt,w?")} converges to the global minimizer (v*, w*).

@ Same sufficient conditions required for convergence of gradient
descent to global minimizer in the 2-layer model with regular ReLU
activation (Du, Lee, Tian, Péczos, Singh, '18).
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Conclusion

Conclusion and Future Work

o Coarse gradients are simple and effective for SGD training of fully
quantized deep neural networks.

@ Blending enhances classification accuracy in the low bit-width regime.

@ Proved positive correlation between expected coarse gradient and true
gradient, and convergence of a coarse gradient descent algorithm in
2-layer neural network regression model with Gaussian input data.

o Further understanding of coarse gradient descent for large scale
optimization problems with no or vanishing gradients, and
non-Gaussian data.
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Conclusion

Thank You !

Questions ?
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