
Blended Coarse Gradient Descent for Full Quantization
of Deep Neural Networks

Jack Xin

Department of Mathematics

University of California, Irvine.

Blended Coarse Gradient (ICMDS) Nov, 2018 1 / 30



Collaborators and Acknowledgements

Jiancheng Lyu (UC Irvine).

Penghang Yin, Stan Osher (UCLA).

Shuai Zhang, Yingyong Qi (Qualcomm AI Research, San Diego).

Partially supported by NSF Big Data Program.

Blended Coarse Gradient (ICMDS) Nov, 2018 2 / 30



Outline

Outline

Deep Neural Networks (DNN) and Quantization Problem.

Why Coarse Derivative ?

Blended Coarse Gradient Descent and Properties.

Numerical Experiments.

Analysis of Coarse Gradient Descent.

Conclusion and Future Work.

Blended Coarse Gradient (ICMDS) Nov, 2018 3 / 30



DNN and Quantization

Deep Learning

DNNs drive the recent AI advances suppassing human performance
(image/speech recognition, Alpha-Go) and big data research across
all scientific disciplines.

O := wL+1 ∗ σ(wL ∗ · · ·σ(w1 ∗ I) · · · ), σ = max(·, 0), activation.

Require hundreds of megabytes of memory to store full-precision
floating-point weights (w1,w2, · · · ), and billions of FLOPs (floating
point operations per second) on a single forward pass (I to O).

Blended Coarse Gradient (ICMDS) Nov, 2018 4 / 30



DNN and Quantization

Quantization

A challenge to run DNN on mobile devices or other platforms with
limited resources.

An effective complexity reduction method is quantization:

Restrict weight and activation values to discrete and finite subsets.

Network retraining is needed to maintain the same level of accuracy.

Resolving conflict:

discreteness of quantization

vs.

continuous nature of stochastic gradient descent (SGD).

Blended Coarse Gradient (ICMDS) Nov, 2018 5 / 30



DNN and Quantization

Weight Quantization

Entries of weight matrix wl of dimension N(l) in each layer l are
constrained to values from the set:

Q := R+ × {±q1,±, q2, · · · ,±qm}N(l)

a float precision scaling factor times signed quantized values:

0 ≤ q1 < q2 < · · · < qm.

1-bit (binarization): m = 1, q1 = 1.

2-bit (ternarization): m = 2, q1 = 0, q2 = 1.

4-bit linear quantization: m = 8, qj = j
8 , j = 0, 1, · · · , 8.

Blended Coarse Gradient (ICMDS) Nov, 2018 6 / 30



DNN and Quantization

Projection: solving least squares problem

Given matrix W , find:

projQ(W ) = argminz∈Q ‖z −W ‖2 = s+ · q∗

(s+, q∗) = argmins≥0,s·q∈Q‖s · q −W ‖2.

Binarization (Rastegari, et al, 2016; complexity O(N)):

s+ = ‖W ‖1/dim(W ), q∗ = sign(W ), sign(0) := 1.

Ternarization (Yin, Zhang, Qi, X, 2016; complexity O(N logN)):

s+ = ‖W[t∗]‖1/t∗, q∗ = sign(W[t∗]), sign(0) = 0,

t∗ := argmax1≤t≤dim(W ) ‖W[t]‖21/t,

W[t]: keep t largest entries in magnitude, zero out the rest.

Blended Coarse Gradient (ICMDS) Nov, 2018 7 / 30



DNN and Quantization

Projection: solving least squares problem

At bit-width bw ≥ 3, exact solutions are too expensive
computationally.

Iterative solutions by Lloyd algorithm: alternating between s-update
and q-update.

s-update:
(q(i))>W

‖q(i)‖2
= argmins∈R ‖s q(i) −W ‖2.

q-update: minimize component by component.

Practically, one step Lloyd: initialize s = 2
2bw−1‖W ‖∞; find q ∈ Q

componentwise to the least squares problem.

Errors in quantization can be corrected during network retraining.

Blended Coarse Gradient (ICMDS) Nov, 2018 8 / 30



DNN and Quantization

Activation Quantization (AQ)

Uniform AQ:

σ (x , α) =


0, if x ≤ 0,

kα, if (k − 1)α < x ≤ kα, k = 1 : 2ba − 1,(
2ba − 1

)
α, if x >

(
2ba − 1

)
α,

x the scalar input, α > 0 the resolution, ba ∈ Z+ the bit-width of
activation, k the quantization level.

4-bit (4A): ba = 4 and k = 1, 2, · · · , 15.

Sample loss function for training input Z and label u:

`(w, α; {Z, u}) := `(wL+1 ∗σ(wL ∗ · · · ∗w2 ∗σ(w1 ∗Z, α1) · · · , αL); u)

wj : weights in j-th linear (fully-connected or convolutional) layer.
* = matrix-vector product or convolution. The j-th quantized ReLU
σ(xj , αj) acts element-wise on output xj from previous linear layer,
with a trainable scalar αj > 0.

Blended Coarse Gradient (ICMDS) Nov, 2018 9 / 30



DNN and Quantization

Minimize Piecewise Constant Functions in High Dim

Given N training samples, minimize empirical risk with quantized
ReLU:

min
w,α

f (w,α) :=
1

N

N∑
i=1

`(w, α; {Z(i), u(i)})

Gradient calculated by chain rule involves: ∂σ
∂x (= 0 a.e.) and ∂σ

∂α .

∂`

∂wL
= σ(xL−1, αL−1) ◦ ∂σ

∂x
(xL, αL) ◦w>L+1 ◦ ∇`(xL+1; u)

∂`

∂αL−1
=
∂σ

∂α
(xL−1, αL−1) ◦w>L ◦

∂σ

∂x
(xL, αL) ◦w>L+1 ◦ ∇`(xL+1; u)

xj := wj ∗ σ(xj−1, αj−1).

Zero gradients a.e. of ` in {wj}Lj=1 and {αj}L−1j=1 .

Zero gradients by auto-diff on Pytorch, causing SGD to stagnate.

Blended Coarse Gradient (ICMDS) Nov, 2018 10 / 30



DNN and Quantization

Walking Down a Hill of Terraces ?

Blended Coarse Gradient (ICMDS) Nov, 2018 11 / 30



DNN and Quantization

Differentiate a Staircase Function over Large Scale

“Large scale” derivative of quantized σ (a staircase):

∂σ

∂x
(x , α) ≈


0, if x ≤ 0,

1, if 0 < x ≤
(
2ba − 1

)
α,

0, if x >
(
2ba − 1

)
α

a non-zero value in the middle to reflect the overall variation of σ. Or
the derivative of the step-back view of σ in x .

Same as the derivative of the clipped ReLU (a ramp):

σ̃(x , α) =


0, if x ≤ 0,

x , if 0 < x ≤ (2ba − 1)α,(
2ba − 1

)
α, if x >

(
2ba − 1

)
α.

Blended Coarse Gradient (ICMDS) Nov, 2018 12 / 30



DNN and Quantization

When a.e. partial derivative exists

but not the best in either classification accuracy or computational
cost:

∂σ

∂α
(x , α) =


0, if x ≤ 0,

k , if (k − 1)α < x ≤ kα, k = 1 : 2ba − 1;

2ba − 1, if x >
(
2ba − 1

)
α.

3-valued “coarse” partial derivative in α:

∂σ

∂α
(x , α) ≈


0, if x ≤ 0,

2ba−1, if 0 < x ≤
(
2ba − 1

)
α,

2ba − 1, if x >
(
2ba − 1

)
α.

The middle value 2ba−1 is the arithmetic mean of the intermediate k
values of the a.e. partial derivative above.

Blended Coarse Gradient (ICMDS) Nov, 2018 13 / 30



DNN and Quantization

Coarse Gradients

2-valued coarse partial derivative proposed in PACT ’18 (using
straight-through estimator of Hinton ’12, Bengio et al, ’13), or simply
zero out all nonzero values except their maximum in a.e. ∂σ

∂α(x , α)

∂σ

∂α
(x , α) ≈

{
0, if x ≤

(
2ba − 1

)
α,

2ba − 1, if x >
(
2ba − 1

)
α,

exactly ∂ clipped ReLU
∂α (x , α).

Coarse gradients in action: substitute

1) coarse partials for α partial derivative,

2) clipped ReLU in x partial derivative

of the quantized σ in the chain rule expressions of gradients.

Blended Coarse Gradient (ICMDS) Nov, 2018 14 / 30



DNN and Quantization

Full Quantization Problem

Layer-wise weight and activation quantization problem is:

min
w,α

f (w,α) subject to w ∈ Q = Q1 ×Q2 · · · ×QL+1,

weight in j-th linear layer is constrained as wj = δjqj ∈ Qj for some
adjustable scalar δj > 0. Each entry of qj is optimally drawn from the
quantization set given by {± k

2bw−1 : k = 0, 1, · · · , 2bw−1 − 1} for
bw ≥ 2 and {±1} for bw = 1. Here bw ∈ Z+ is the bit-width for
weight quantization, δj a floating (32-bit) real number.

BinaryConnect weight update (Courbariaux et al, ’15):

wt+1
f = wt

f − η∇f (wt), wt+1 = projQ(wt+1
f ),

where {wt} is the sequence of quantized weights,
{wt

f } is an auxiliary sequence of floating weights.

Blended Coarse Gradient (ICMDS) Nov, 2018 15 / 30



DNN and Quantization

Blended Gradient Descent

Blend BinaryConnect and classical projected GD (for smooth
constraint):

PGD : wt+1
f = wt − η∇f (wt), wt+1 = projQ(wt+1

f )

BGD : wt+1
f = (1− ρ)wt

f + ρwt − η∇f (wt), wt+1 = projQ(wt+1
f )

with parameter ρ� 1.

If objective function f has L-Lipschitz gradient, then for ρ ∈ (0, 1), at
small enough learning rate η > 0, BGD satisfies the sufficient descent
property (SDP):

f (wt+1)− f (wt) ≤ −c ‖wt+1 −wt‖2,

for some positive constant c > 0, while BinaryConnect does not.

Blended Coarse Gradient (ICMDS) Nov, 2018 16 / 30



BCGD and Experiment

Blended Coarse Gradient Descent

In fully quantized network training (˜= coarse):

αt+1 = αt − ηα ∇̃α f (wt ,αt),

wt+1
f = (1− ρ)wt

f + ρwt − ηw ∇̃w f (wt ,αt),

wt+1 = projQ(wt+1
f )

Two scale learning: ηα = 0.01 ηw .
α-learning much slower than w-learning.

Blending parameter: ρ = 10−5.

Initialization: α1 = 1/(2ba − 1), ηα = 10−4.
Decay factor of learning rates: 0.1.

Image Datasets: CIFAR-10, ImageNet.

PyTorch on 4 Nvidia GeForce GTX 1080 Ti GPUs.

Blended Coarse Gradient (ICMDS) Nov, 2018 17 / 30



BCGD and Experiment

Experiment: a) Blending improves accuracy especially at
low precision. b) No need of a.e. derivative.

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC
92.13 91.74

88.12 89.78 91.51
VGG-11+BCGD 88.74 90.08 91.38

ResNet-20 + BC
92.41 91.90

89.23 90.89 91.53
ResNet-20+BCGD 90.10 91.15 91.56

Table: CIFAR-10 validation accuracies in % with the a.e. α derivative.

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC
92.13 92.08

89.12 90.52 91.89
VGG-11+BCGD 89.59 90.71 91.70

ResNet-20 + BC
92.41 92.14

89.37 91.02 91.71
ResNet-20+BCGD 90.05 91.03 91.97

Table: CIFAR-10 validation accuracies with the 3-valued α derivative.

Blended Coarse Gradient (ICMDS) Nov, 2018 18 / 30



BCGD and Experiment

Experiment: a) 3-valued better than 2-valued dσ/dα. b)
Network at (4W,4A) within 1 % of float network precision.

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC
92.13 92.08

89.12 90.52 91.89
VGG-11+BCGD 89.59 90.71 91.70

ResNet-20 + BC
92.41 92.14

89.37 91.02 91.71
ResNet-20+BCGD 90.05 91.03 91.97

Table: CIFAR-10 validation accuracies with the 3-valued α derivative.

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC
92.13 91.66

88.50 89.99 91.31
VGG-11+BCGD 89.12 90.00 91.31

ResNet-20 + BC
92.41 91.73

89.22 90.64 91.37
ResNet-20+BCGD 89.98 90.75 91.65

Table: CIFAR-10 validation accuracies with the 2-valued α derivative.

Blended Coarse Gradient (ICMDS) Nov, 2018 19 / 30



BCGD and Experiment

Experiment: Blending effects during training on ImageNet.

Figure: ImageNet validation accuracies vs. number of epochs using 3-valued
α-derivative on 1W4A ResNet-18; with (orange) and without (blue) blending.
Top-1: left. Top-5: right.

Blended Coarse Gradient (ICMDS) Nov, 2018 20 / 30



BCGD and Experiment

Experiment: all convolution layers quantized on ImageNet.

Float
1W4A 4W4A 4W8A

3 val 2 val 3 val 2 val 3 val 2 val

top-1 69.64 64.36 63.37 67.36 66.97 68.85 68.83

top-5 88.98 85.65 84.93 87.76 87.41 88.71 88.84

Table: ImageNet validation accuracies (%) with BCGD on ResNet-18. The
3-valued α-derivatives improve more on 2-valued in low bit regime. Quantized
4W8A network accurate within 1% of float precision network.

ImageNet: 1.2 million images for training and 50,000 for validation,
1,000 classes. Mini-batch size 256 and 80 epochs of training with
learning rate decay at epoch #50 and #70.

CIFAR-10: 60,000 small color images of 10 classes. Split into 50,000
training and 10,000 validation. Mini-batch size 128 and 200 epochs
of training with learning rate decay at epoch #80 and #140.

Blended Coarse Gradient (ICMDS) Nov, 2018 21 / 30



Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Two-layer neural network model with binarized ReLU activation:

σ(x) =

{
0 if x ≤ 0,

1 if x > 0.

Sample loss function:

`(v,w;Z) :=
1

2

(
v>σ(Zw)− (v∗)>σ(Zw∗)

)2
v∗ ∈ Rm and w∗ ∈ Rn: prescribed nonzero ‘teacher parameters’ in
2nd and 1st layers. Gaussian input data: entries of Z ∈ Rm×n, i.i.d.
sampled from unit Gaussian N (0, 1).

`(v,w;Z) = `(v,w/c;Z), ∀ c > 0. WLOG: ‖w∗‖ = 1.

Blended Coarse Gradient (ICMDS) Nov, 2018 22 / 30



Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Empirical risk minimization:

min
v∈Rm,w∈Rn

1

N

N∑
i=1

`(v,w;Z(i))

piecewise constant objective.

Population loss minimization:

min
v∈Rm,w∈Rn

f (v,w) := EZ [`(v,w;Z)]

smoother objective (θ(·, ·) = angle between dots):

8 f (v,w) = v>
(
I + 11>

)
v − 2v>

((
1− 2

π
θ(w,w∗)

)
I + 11>

)
v∗

+ (v∗)>
(
I + 11>

)
v∗.

Blended Coarse Gradient (ICMDS) Nov, 2018 23 / 30



Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Lipschitz continuous gradients:

∂f

∂v
(v,w) =

1

4

(
I + 11>

)
v − 1

4

((
1− 2

π
θ(w,w∗)

)
I + 11>

)
v∗

∂f

∂w
(v,w) = − v>v∗

2π‖w‖

(
I− ww>

‖w‖2

)
w∗∥∥∥(I− ww>

‖w‖2

)
w∗
∥∥∥ , ∀ θ(w,w∗) ∈ (0, π).

Possible locations for non-trivial local minimizers are:
1 Critical points where the gradients defined above vanish simultaneously

(may not be possible in general)

v>v∗ = 0 and v =
(
I + 11>

)−1((
1− 2

π
θ(w,w∗)

)
I + 11>

)
v∗.

2 Non-differentiable points where θ(w,w∗) = 0 and v = v∗ (global

minimizer), or θ(w,w∗) = π and v =
(
I + 11>

)−1
(11> − I)v∗.

Blended Coarse Gradient (ICMDS) Nov, 2018 24 / 30



Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Accessible gradients in training are finite sample approximations of:

EZ

[
∂`

∂v
(v,w;Z)

]
and EZ

[
∂`

∂w
(v,w;Z)

]
.

Formally by chain rule (gradient to w is a.e. 0):

∂`

∂v
(v,w;Z) = σ(Zw)

(
v>σ(Zw)− (v∗)>σ(Zw∗)

)
.

∂`

∂w
(v,w;Z) = Z>

(
σ′(Zw)� v

) (
v>σ(Zw)− (v∗)>σ(Zw∗)

)
Replace σ′ by (sub)derivative µ′ of regular ReLU function
µ(x) := max(x , 0), and define coarse gradient:

g(v,w;Z) := Z>
(
µ′(Zw)� v

) (
v>σ(Zw)− (v∗)>σ(Zw∗)

)
.

Blended Coarse Gradient (ICMDS) Nov, 2018 25 / 30



Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Coarse gradient descent with weight normalization:
vt+1 = vt − η EZ

[
∂`
∂v (vt ,wt ;Z)

]
wt+ 1

2 = wt − η EZ [g(vt ,wt ;Z)]

wt+1 = wt+1/2

‖wt+1/2‖

Expected coarse gradient:

EZ [g(v,w;Z)] =
h(v, v∗)

2
√

2π

w

‖w‖
− cos

(
θ(w,w∗)

2

)
v>v∗√

2π

w
‖w‖ + w∗∥∥∥ w
‖w‖ + w∗

∥∥∥
h(v, v∗) := ‖v‖2 + (1>v)2 − (1>v)(1>v∗) + v>v∗.

Critical point conditions and global minimizer are the same as those
of the population loss.

Blended Coarse Gradient (ICMDS) Nov, 2018 26 / 30



Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Coarse partial gradient EZ [g(v,w;Z)] = 0 is well-defined at global
minimizer, v = v∗, θ(w,w∗) = 0, of the population loss. In contrast,
the true gradient ∂f

∂w (v,w) does not exist.

Coarse gradient is positively correlated with the true gradient.

Theorem (Positive Correlation)

If θ(w,w∗) ∈ (0, π) , and ‖w‖ 6= 0, the inner product between the coarse
and true gradients w.r.t. w:〈

EZ [g(v,w;Z)] ,
∂f

∂w
(v,w)

〉
=

sin (θ(w,w∗))

2(
√

2π)3‖w‖
(v>v∗)2 ≥ 0.

Blended Coarse Gradient (ICMDS) Nov, 2018 27 / 30



Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Minus coarse gradient is a descent direction.

Theorem (Coarse Gradient Descent and Convergence to Global Minimizer)

Given the initialization (v0,w0) with ‖w0‖ = 1, and let {(vt ,wt)} be the
sequence generated by the normalized coarse gradient descent algorithm.
There exists η0 > 0, such that for any step size η < η0, {f (vt ,wt)} is
monotonically decreasing, both

∥∥EZ

[
∂`
∂v (vt ,wt ;Z)

]∥∥ and
‖EZ [g(vt ,wt ;Z)]‖ converge to 0, as t →∞.

Morover, if the initialization (v0,w0) satisfies geometric conditions:
θ(v0, v∗) < π

2 , θ(w0,w∗) < π
2 , and (1>v∗)(1>v0) ≤ (1>v∗)2, then

{(vt ,wt)} converges to the global minimizer (v∗,w∗).

Same sufficient conditions required for convergence of gradient
descent to global minimizer in the 2-layer model with regular ReLU
activation (Du, Lee, Tian, Póczos, Singh, ’18).

Blended Coarse Gradient (ICMDS) Nov, 2018 28 / 30



Conclusion

Conclusion and Future Work

Coarse gradients are simple and effective for SGD training of fully
quantized deep neural networks.

Blending enhances classification accuracy in the low bit-width regime.

Proved positive correlation between expected coarse gradient and true
gradient, and convergence of a coarse gradient descent algorithm in
2-layer neural network regression model with Gaussian input data.

Further understanding of coarse gradient descent for large scale
optimization problems with no or vanishing gradients, and
non-Gaussian data.

Blended Coarse Gradient (ICMDS) Nov, 2018 29 / 30



Conclusion

Thank You !

Questions ?

Blended Coarse Gradient (ICMDS) Nov, 2018 30 / 30


	Outline
	DNN and Quantization
	BCGD and Experiment
	Analysis of Coarse Gradient Descent
	Conclusion

