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DNN and Quantization

Deep Learning

DNNs drive the recent AI advances suppassing human performance
(image/speech recognition, Alpha-Go) and big data research across
all scientific disciplines.

O := wL+1 ∗ σ(wL ∗ · · ·σ(w1 ∗ I) · · · ), σ = max(·, 0), activation.

Require hundreds of megabytes of memory to store full-precision
floating-point weights (w1,w2, · · · ), and billions of FLOPs (floating
point operations per second) on a single forward pass (I to O).
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DNN and Quantization

Quantization

A challenge to run DNN on mobile devices or other platforms with
limited resources.

An effective complexity reduction method is quantization:

Restrict weight and activation values to discrete and finite subsets.

Network retraining is needed to maintain the same level of accuracy.

Resolving conflict:

discreteness of quantization

vs.

continuous nature of stochastic gradient descent (SGD).
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DNN and Quantization

Weight Quantization

Entries of weight matrix wl of dimension N(l) in each layer l are
constrained to values from the set:

Q := R+ × {±q1,±, q2, · · · ,±qm}N(l)

a float precision scaling factor times signed quantized values:

0 ≤ q1 < q2 < · · · < qm.

1-bit (binarization): m = 1, q1 = 1.

2-bit (ternarization): m = 2, q1 = 0, q2 = 1.

4-bit linear quantization: m = 8, qj = j
8 , j = 0, 1, · · · , 8.

Blended Coarse Gradient (ICMDS) Nov, 2018 6 / 30



DNN and Quantization

Projection: solving least squares problem

Given matrix W , find:

projQ(W ) = argminz∈Q ‖z −W ‖2 = s+ · q∗

(s+, q∗) = argmins≥0,s·q∈Q‖s · q −W ‖2.

Binarization (Rastegari, et al, 2016; complexity O(N)):

s+ = ‖W ‖1/dim(W ), q∗ = sign(W ), sign(0) := 1.

Ternarization (Yin, Zhang, Qi, X, 2016; complexity O(N logN)):

s+ = ‖W[t∗]‖1/t∗, q∗ = sign(W[t∗]), sign(0) = 0,

t∗ := argmax1≤t≤dim(W ) ‖W[t]‖21/t,

W[t]: keep t largest entries in magnitude, zero out the rest.

Blended Coarse Gradient (ICMDS) Nov, 2018 7 / 30



DNN and Quantization

Projection: solving least squares problem

At bit-width bw ≥ 3, exact solutions are too expensive
computationally.

Iterative solutions by Lloyd algorithm: alternating between s-update
and q-update.

s-update:
(q(i))>W

‖q(i)‖2
= argmins∈R ‖s q(i) −W ‖2.

q-update: minimize component by component.

Practically, one step Lloyd: initialize s = 2
2bw−1‖W ‖∞; find q ∈ Q

componentwise to the least squares problem.

Errors in quantization can be corrected during network retraining.
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DNN and Quantization

Activation Quantization (AQ)

Uniform AQ:

σ (x , α) =


0, if x ≤ 0,

kα, if (k − 1)α < x ≤ kα, k = 1 : 2ba − 1,(
2ba − 1

)
α, if x >

(
2ba − 1

)
α,

x the scalar input, α > 0 the resolution, ba ∈ Z+ the bit-width of
activation, k the quantization level.

4-bit (4A): ba = 4 and k = 1, 2, · · · , 15.

Sample loss function for training input Z and label u:

`(w, α; {Z, u}) := `(wL+1 ∗σ(wL ∗ · · · ∗w2 ∗σ(w1 ∗Z, α1) · · · , αL); u)

wj : weights in j-th linear (fully-connected or convolutional) layer.
* = matrix-vector product or convolution. The j-th quantized ReLU
σ(xj , αj) acts element-wise on output xj from previous linear layer,
with a trainable scalar αj > 0.
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DNN and Quantization

Minimize Piecewise Constant Functions in High Dim

Given N training samples, minimize empirical risk with quantized
ReLU:

min
w,α

f (w,α) :=
1

N

N∑
i=1

`(w, α; {Z(i), u(i)})

Gradient calculated by chain rule involves: ∂σ
∂x (= 0 a.e.) and ∂σ

∂α .

∂`

∂wL
= σ(xL−1, αL−1) ◦ ∂σ

∂x
(xL, αL) ◦w>L+1 ◦ ∇`(xL+1; u)

∂`

∂αL−1
=
∂σ

∂α
(xL−1, αL−1) ◦w>L ◦

∂σ

∂x
(xL, αL) ◦w>L+1 ◦ ∇`(xL+1; u)

xj := wj ∗ σ(xj−1, αj−1).

Zero gradients a.e. of ` in {wj}Lj=1 and {αj}L−1j=1 .

Zero gradients by auto-diff on Pytorch, causing SGD to stagnate.
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DNN and Quantization

Walking Down a Hill of Terraces ?
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DNN and Quantization

Differentiate a Staircase Function over Large Scale

“Large scale” derivative of quantized σ (a staircase):

∂σ

∂x
(x , α) ≈


0, if x ≤ 0,

1, if 0 < x ≤
(
2ba − 1

)
α,

0, if x >
(
2ba − 1

)
α

a non-zero value in the middle to reflect the overall variation of σ. Or
the derivative of the step-back view of σ in x .

Same as the derivative of the clipped ReLU (a ramp):

σ̃(x , α) =


0, if x ≤ 0,

x , if 0 < x ≤ (2ba − 1)α,(
2ba − 1

)
α, if x >

(
2ba − 1

)
α.
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DNN and Quantization

When a.e. partial derivative exists

but not the best in either classification accuracy or computational
cost:

∂σ

∂α
(x , α) =


0, if x ≤ 0,

k , if (k − 1)α < x ≤ kα, k = 1 : 2ba − 1;

2ba − 1, if x >
(
2ba − 1

)
α.

3-valued “coarse” partial derivative in α:

∂σ

∂α
(x , α) ≈


0, if x ≤ 0,

2ba−1, if 0 < x ≤
(
2ba − 1

)
α,

2ba − 1, if x >
(
2ba − 1

)
α.

The middle value 2ba−1 is the arithmetic mean of the intermediate k
values of the a.e. partial derivative above.
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DNN and Quantization

Coarse Gradients

2-valued coarse partial derivative proposed in PACT ’18 (using
straight-through estimator of Hinton ’12, Bengio et al, ’13), or simply
zero out all nonzero values except their maximum in a.e. ∂σ

∂α(x , α)

∂σ

∂α
(x , α) ≈

{
0, if x ≤

(
2ba − 1

)
α,

2ba − 1, if x >
(
2ba − 1

)
α,

exactly ∂ clipped ReLU
∂α (x , α).

Coarse gradients in action: substitute

1) coarse partials for α partial derivative,

2) clipped ReLU in x partial derivative

of the quantized σ in the chain rule expressions of gradients.
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DNN and Quantization

Full Quantization Problem

Layer-wise weight and activation quantization problem is:

min
w,α

f (w,α) subject to w ∈ Q = Q1 ×Q2 · · · ×QL+1,

weight in j-th linear layer is constrained as wj = δjqj ∈ Qj for some
adjustable scalar δj > 0. Each entry of qj is optimally drawn from the
quantization set given by {± k

2bw−1 : k = 0, 1, · · · , 2bw−1 − 1} for
bw ≥ 2 and {±1} for bw = 1. Here bw ∈ Z+ is the bit-width for
weight quantization, δj a floating (32-bit) real number.

BinaryConnect weight update (Courbariaux et al, ’15):

wt+1
f = wt

f − η∇f (wt), wt+1 = projQ(wt+1
f ),

where {wt} is the sequence of quantized weights,
{wt

f } is an auxiliary sequence of floating weights.
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DNN and Quantization

Blended Gradient Descent

Blend BinaryConnect and classical projected GD (for smooth
constraint):

PGD : wt+1
f = wt − η∇f (wt), wt+1 = projQ(wt+1

f )

BGD : wt+1
f = (1− ρ)wt

f + ρwt − η∇f (wt), wt+1 = projQ(wt+1
f )

with parameter ρ� 1.

If objective function f has L-Lipschitz gradient, then for ρ ∈ (0, 1), at
small enough learning rate η > 0, BGD satisfies the sufficient descent
property (SDP):

f (wt+1)− f (wt) ≤ −c ‖wt+1 −wt‖2,

for some positive constant c > 0, while BinaryConnect does not.
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BCGD and Experiment

Blended Coarse Gradient Descent

In fully quantized network training (˜= coarse):

αt+1 = αt − ηα ∇̃α f (wt ,αt),

wt+1
f = (1− ρ)wt

f + ρwt − ηw ∇̃w f (wt ,αt),

wt+1 = projQ(wt+1
f )

Two scale learning: ηα = 0.01 ηw .
α-learning much slower than w-learning.

Blending parameter: ρ = 10−5.

Initialization: α1 = 1/(2ba − 1), ηα = 10−4.
Decay factor of learning rates: 0.1.

Image Datasets: CIFAR-10, ImageNet.

PyTorch on 4 Nvidia GeForce GTX 1080 Ti GPUs.
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BCGD and Experiment

Experiment: a) Blending improves accuracy especially at
low precision. b) No need of a.e. derivative.

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC
92.13 91.74

88.12 89.78 91.51
VGG-11+BCGD 88.74 90.08 91.38

ResNet-20 + BC
92.41 91.90

89.23 90.89 91.53
ResNet-20+BCGD 90.10 91.15 91.56

Table: CIFAR-10 validation accuracies in % with the a.e. α derivative.

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC
92.13 92.08

89.12 90.52 91.89
VGG-11+BCGD 89.59 90.71 91.70

ResNet-20 + BC
92.41 92.14

89.37 91.02 91.71
ResNet-20+BCGD 90.05 91.03 91.97

Table: CIFAR-10 validation accuracies with the 3-valued α derivative.
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BCGD and Experiment

Experiment: a) 3-valued better than 2-valued dσ/dα. b)
Network at (4W,4A) within 1 % of float network precision.

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC
92.13 92.08

89.12 90.52 91.89
VGG-11+BCGD 89.59 90.71 91.70

ResNet-20 + BC
92.41 92.14

89.37 91.02 91.71
ResNet-20+BCGD 90.05 91.03 91.97

Table: CIFAR-10 validation accuracies with the 3-valued α derivative.

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC
92.13 91.66

88.50 89.99 91.31
VGG-11+BCGD 89.12 90.00 91.31

ResNet-20 + BC
92.41 91.73

89.22 90.64 91.37
ResNet-20+BCGD 89.98 90.75 91.65

Table: CIFAR-10 validation accuracies with the 2-valued α derivative.
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BCGD and Experiment

Experiment: Blending effects during training on ImageNet.

Figure: ImageNet validation accuracies vs. number of epochs using 3-valued
α-derivative on 1W4A ResNet-18; with (orange) and without (blue) blending.
Top-1: left. Top-5: right.
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BCGD and Experiment

Experiment: all convolution layers quantized on ImageNet.

Float
1W4A 4W4A 4W8A

3 val 2 val 3 val 2 val 3 val 2 val

top-1 69.64 64.36 63.37 67.36 66.97 68.85 68.83

top-5 88.98 85.65 84.93 87.76 87.41 88.71 88.84

Table: ImageNet validation accuracies (%) with BCGD on ResNet-18. The
3-valued α-derivatives improve more on 2-valued in low bit regime. Quantized
4W8A network accurate within 1% of float precision network.

ImageNet: 1.2 million images for training and 50,000 for validation,
1,000 classes. Mini-batch size 256 and 80 epochs of training with
learning rate decay at epoch #50 and #70.

CIFAR-10: 60,000 small color images of 10 classes. Split into 50,000
training and 10,000 validation. Mini-batch size 128 and 200 epochs
of training with learning rate decay at epoch #80 and #140.

Blended Coarse Gradient (ICMDS) Nov, 2018 21 / 30



Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Two-layer neural network model with binarized ReLU activation:

σ(x) =

{
0 if x ≤ 0,

1 if x > 0.

Sample loss function:

`(v,w;Z) :=
1

2

(
v>σ(Zw)− (v∗)>σ(Zw∗)

)2
v∗ ∈ Rm and w∗ ∈ Rn: prescribed nonzero ‘teacher parameters’ in
2nd and 1st layers. Gaussian input data: entries of Z ∈ Rm×n, i.i.d.
sampled from unit Gaussian N (0, 1).

`(v,w;Z) = `(v,w/c;Z), ∀ c > 0. WLOG: ‖w∗‖ = 1.
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Empirical risk minimization:

min
v∈Rm,w∈Rn

1

N

N∑
i=1

`(v,w;Z(i))

piecewise constant objective.

Population loss minimization:

min
v∈Rm,w∈Rn

f (v,w) := EZ [`(v,w;Z)]

smoother objective (θ(·, ·) = angle between dots):

8 f (v,w) = v>
(
I + 11>

)
v − 2v>

((
1− 2

π
θ(w,w∗)

)
I + 11>

)
v∗

+ (v∗)>
(
I + 11>

)
v∗.
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Lipschitz continuous gradients:

∂f

∂v
(v,w) =

1

4

(
I + 11>

)
v − 1

4

((
1− 2

π
θ(w,w∗)

)
I + 11>

)
v∗

∂f

∂w
(v,w) = − v>v∗

2π‖w‖

(
I− ww>

‖w‖2

)
w∗∥∥∥(I− ww>

‖w‖2

)
w∗
∥∥∥ , ∀ θ(w,w∗) ∈ (0, π).

Possible locations for non-trivial local minimizers are:
1 Critical points where the gradients defined above vanish simultaneously

(may not be possible in general)

v>v∗ = 0 and v =
(
I + 11>

)−1((
1− 2

π
θ(w,w∗)

)
I + 11>

)
v∗.

2 Non-differentiable points where θ(w,w∗) = 0 and v = v∗ (global

minimizer), or θ(w,w∗) = π and v =
(
I + 11>

)−1
(11> − I)v∗.
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Accessible gradients in training are finite sample approximations of:

EZ

[
∂`

∂v
(v,w;Z)

]
and EZ

[
∂`

∂w
(v,w;Z)

]
.

Formally by chain rule (gradient to w is a.e. 0):

∂`

∂v
(v,w;Z) = σ(Zw)

(
v>σ(Zw)− (v∗)>σ(Zw∗)

)
.

∂`

∂w
(v,w;Z) = Z>

(
σ′(Zw)� v

) (
v>σ(Zw)− (v∗)>σ(Zw∗)

)
Replace σ′ by (sub)derivative µ′ of regular ReLU function
µ(x) := max(x , 0), and define coarse gradient:

g(v,w;Z) := Z>
(
µ′(Zw)� v

) (
v>σ(Zw)− (v∗)>σ(Zw∗)

)
.
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Coarse gradient descent with weight normalization:
vt+1 = vt − η EZ

[
∂`
∂v (vt ,wt ;Z)

]
wt+ 1

2 = wt − η EZ [g(vt ,wt ;Z)]

wt+1 = wt+1/2

‖wt+1/2‖

Expected coarse gradient:

EZ [g(v,w;Z)] =
h(v, v∗)

2
√

2π

w

‖w‖
− cos

(
θ(w,w∗)

2

)
v>v∗√

2π

w
‖w‖ + w∗∥∥∥ w
‖w‖ + w∗

∥∥∥
h(v, v∗) := ‖v‖2 + (1>v)2 − (1>v)(1>v∗) + v>v∗.

Critical point conditions and global minimizer are the same as those
of the population loss.

Blended Coarse Gradient (ICMDS) Nov, 2018 26 / 30



Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Coarse partial gradient EZ [g(v,w;Z)] = 0 is well-defined at global
minimizer, v = v∗, θ(w,w∗) = 0, of the population loss. In contrast,
the true gradient ∂f

∂w (v,w) does not exist.

Coarse gradient is positively correlated with the true gradient.

Theorem (Positive Correlation)

If θ(w,w∗) ∈ (0, π) , and ‖w‖ 6= 0, the inner product between the coarse
and true gradients w.r.t. w:〈

EZ [g(v,w;Z)] ,
∂f

∂w
(v,w)

〉
=

sin (θ(w,w∗))

2(
√

2π)3‖w‖
(v>v∗)2 ≥ 0.
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Analysis of Coarse Gradient Descent

Two-Layer Neural Network Regression Problem

Minus coarse gradient is a descent direction.

Theorem (Coarse Gradient Descent and Convergence to Global Minimizer)

Given the initialization (v0,w0) with ‖w0‖ = 1, and let {(vt ,wt)} be the
sequence generated by the normalized coarse gradient descent algorithm.
There exists η0 > 0, such that for any step size η < η0, {f (vt ,wt)} is
monotonically decreasing, both

∥∥EZ

[
∂`
∂v (vt ,wt ;Z)

]∥∥ and
‖EZ [g(vt ,wt ;Z)]‖ converge to 0, as t →∞.

Morover, if the initialization (v0,w0) satisfies geometric conditions:
θ(v0, v∗) < π

2 , θ(w0,w∗) < π
2 , and (1>v∗)(1>v0) ≤ (1>v∗)2, then

{(vt ,wt)} converges to the global minimizer (v∗,w∗).

Same sufficient conditions required for convergence of gradient
descent to global minimizer in the 2-layer model with regular ReLU
activation (Du, Lee, Tian, Póczos, Singh, ’18).
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Conclusion

Conclusion and Future Work

Coarse gradients are simple and effective for SGD training of fully
quantized deep neural networks.

Blending enhances classification accuracy in the low bit-width regime.

Proved positive correlation between expected coarse gradient and true
gradient, and convergence of a coarse gradient descent algorithm in
2-layer neural network regression model with Gaussian input data.

Further understanding of coarse gradient descent for large scale
optimization problems with no or vanishing gradients, and
non-Gaussian data.
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Conclusion

Thank You !

Questions ?
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