Question 1:

i. 150*92 mod 14 <u>Answer = 10</u> ((150 mod 14)*(92mod14) mod 14) > ((10)*(8) mod 14) > (80 mod 14) > <u>10</u> (150/14 has a remainder of 10, while 92/14 has a remainder of 8. Multiple them, the divide the product by 14 to get the remainder and the final answer: <u>10</u>)

ii. 6 * (4/11) mod 14 <u>Answer = 6</u>

<u>Convert (4/11) to (88/11) because 88 follows mod 14 + 14 and is divisible by 11 ></u> ((6 mod 14) * (8 mod 14) mod 14) > ((6)*(8) mod 14 > ((48)mod14) > (48-14= 34-14 = 20 - 14 = 6

Added 14 to 4 until I got a number that could divide into 11, and used it to sub in for the fraction.

iii. 24/17 mod 14 <u>Answer = 8</u>

Convert 24 to a multiple of 17 using mod 14 > ((136/17) mod 14) > (8) mod 14)) = 8 This one was pretty straight forward. Add 14 to 24 until you find 17 can divide it, and go from there.

iv. $4^8 * 5^{12} \mod 14 \frac{Answer = 2}{2}$

 $(((4^4) * (4^4)) * ((5^6) * (5^6)) \mod 14)$

a. ((4² mod 14) (4² mod 14) (4² mod 14) (4² mod 14))> ((2)(2)(2)(2)) =16 mod 14=

- b. ((5² mod 14) (5² mod
- c. $2*1 \mod 14 = 2$

I was able to convert part 1 fine, but part b I ended up using the equiv classes conversion from Professor Paar to convert the 11 to 1.

- **v.** $5^{10} * 6^8 \mod 14$ **Answer = 2**
- a. ((5² mod 14) (5² mod 14) (5² mod 14) (5² mod 14) (5² mod 14) mod 14) >

((11)(11)(11)(11) mod 14 > CONVERT WITH EQUIV CLASS > ((1)(1)(1)(1)(1) mod 14 =

<u>1</u>

- b. ((6² mod 14) (6² mod 14) (6² mod 14) (6² mod 14) mod 14) > ((8)(8)(8)(8)) mod 14 > CONVERT > ((-2)(-2)(-2)(-2)) mod 14 > 16 mod 14 = 2
- c. $1^{*2} \mod 14 = 2$

Question 2:

i. Show the elements of groups Z_{13} and Z_{*13}

Answer:

Z13 elements would be {0,1,2,3,4,5,6,7,8,9,10,11,12}

Z*13 would be {1,2,3,4,5,6,7,8,9,10,11,12}

For Z₁₃, 0-12 can all go into 13, but 0 wouldn't go into Z_{*13} because it would be 0 of multiplied. 13 is a prime number, so for Z*13, every number 1-12 has a GCD of 1.

ii. Show the elements of groups $Z_{18}\,and\,Z_{^{\ast}18}$

Answer:

Z₁₈ elements would be {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}

Z*18 would be {1, 5, 7, 11, 13, 17}

Z₁₈ can still use 0-17, BUT Z*18 cannot, because the number itself is not prime. Z*18's

answer would exclude numbers that have some common factor with 18.

iii. Find the order of 5 in Z *13 Answer= Order(5) is 4

 $5^1 = 5 | 5^2 = 25 \mod 13 = 12 | 5^3 = 125 \mod 13 = 8 | 5^4 = 625 \mod 13 = 1$

<u>The order of 5 in z*13 is 4</u>

iv. Find (if it exists) the multiplicative inverse of $5 \in Z_{13}$ (integer ring) <u>Answer: MI = 8</u>

We start by rewriting it as 5*x = 1 mod 13. We will keep replacing X with 1 number up until we

can calculate 5*x = 1 after calculating it with mod 13. Example being:

<u>5*1 = 1 > 5=1 – Not the answer</u>

<u>5*2 = 1 > 10 = 1 – Not the Answer</u>

<u>5*3 = 1 > 15 mod 13 > 2 = 1 - Not the Answer</u>

<u>5*4 = 1 > 20 mod 13 > 7 = 1 – Not the Answer</u>

<u>5*5 = 1 > 25 mod 13 > 12 = 1 – Not the Answer</u>

<u>5*6 = 1 > 30 mod 13 > 4 = 1 – Not Answer</u>

<u>5*7 =1 > 35 mod 13 > 9 = 1 – Not Answer</u>

<u>5*8=1 > 40 mod 13 > 1= 1 – Answer!</u>

V. Is Z*13 a cyclic group? If so, what is its order and the generator element?

<u>Z*13 would be {1,2,3,4,5,6,7,8,9,10,11,12} |Z*13| would be 12 ord (1) = 1. Ord (2) = 12</u>

 $2^{12} \mod 13 = 1 \mid 3^{12} \mod 13 = 1 \mid 4^{12} \mod 13 = 1 \mid 5^{12} \mod 13 = 1 \mid 6^{12} \mod 13 = 1$

 $7^{12} \mod 13 = 1 \ | \ 8^{12} \mod 13 = 1 \ | \ 9^{12} \mod 13 = 1 \ | \ 10^{12} \mod 13 = 1 \ | \ 11^{12} \mod 13 = 1$

<u>12¹² mod 13 = 1</u>

<u>Answer:</u>

The maximum order we got was 12, so it is cyclical, I think.

The generators would be: {1,2,3,4,5,6,7,8,9,10,11,12}

This question really confuses me since the examples in the notes used non-prime numbers as examples.