a. The elements of GF(19) would be {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18} with p = 19
b. The additive inverse of 9 on Gf(19) would be calculated with: -9+19, with the additive inverse coming out as 10.

C. For the multiplicative inverse, we keep plugging 9*x mod 19 until we get 1, so:

9 mod 19 = 9 | 9*2 mod 19 = 1. The multiplicative inverse of 9 in GF(19) is 1

2. a. the Extension field of $GF(2^6)$ with A(x) = 17 would be:

A = x^4 + 1, with X being 2 from the GF. $2^4 = 2^{*}2 = 4^{*}2 = 8^{*}2 = 16 + 1 = 17$

(I struggled to understand this one, so I don't know how to properly write it.)

b. for B(x) = 8, it would look like

B = x³ + 0, X being 2 again. 2*2 = 4 *2 = 8

c. for C(x) = 1, it would be

C = x⁰, X again being 2, but 2⁰ comes out as 1

d. A(x) + B(x) in poly form would be: $x^4 + x^3 + 1$, and the integer it comes out to would be 25.

e. B(x) + C(x) in poly form would be: $x^3 + x^0$, it the integer would comes out to 9.

3. If $GF(2^8)$, determine the multiplicative inverses of $4D_{16}$ and $4E_{16}$ would be:

4D: x=2, y=5 | 4E: x= E, y= 9

4. If $GF(2^8)$, determine the AES S-box substitutions of $5E_{16}$ and $5F_{16}$:

5E: x=9, y=D | 5F: x=8, y=4

E5	BO	7B	92
C2	C8	1F	33
D6	F9	8E	74
A8	9C	06	85

After shifting, it becomes:

E5	B0	7B	92
C 8	1F	33	C2
8E	74	D6	F9
85	A8	9C	06