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Extreme concentration of marine biodiversity and exploitation of marine resources in the Coral Triangle pose challenges to
biogeographers and resource managers. Comparative phylogeography provides a powerful tool to test biogeographic hypotheses
evoked to explain species richness in the Coral Triangle. It can also be used to delineate management units for marine resources.
After about a decade of phylogeographical studies, patterns for the Coral Triangle are emerging. Broad connectivity in some species
support the notion that larvae have maintained gene flow among distant populations for long periods. Other phylogeographic
patterns suggest vicariant events resulting from Pleistocene sea level fluctuations, which have, at least occasionally, resulted in
speciation. Divergence dates ranging back to the Miocene suggest that changing land configurations may have precipitated an
explosion of species diversification. A synthesis of the marine phylogeographic studies reveals repeated patterns that corroborate
hypothesized biogeographic processes and suggest improved management schemes for marine resources.

1. Introduction

The Coral Triangle is well recognized as the global apogee
of marine biodiversity, with species richness incrementally
decreasing from this region eastward across the Pacific Ocean
and westward across the Indian Ocean [1, 2]. This center

encompasses much of Indonesia, Malaysia, the Philippines,
Brunei, Timor L’Este, Papua New Guinea, and the Solomon
Islands and is also variously referred to as the East Indies
Triangle (e.g., [3–5]), the Indonesian and Philippine Region
[6], the Indo-Malay-Philippine Archipelago [7, 8], and a
variety of other names [2]. It has also been referred to as
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the Indo-Australian Archipelago (e.g., [9, 10]) although this
is a misnomer for the Coral Triangle biodiversity hotspot,
since it does not include Australia [1] and has geological
origins transcending Eurasian and Indian−Australian tec-
tonic elements [11]. In addition to its biodiversity reputation,
the Coral Triangle is also unfortunately well known for
peaks in threats to marine biodiversity, particularly for reef-
building corals and coral reef fishes [12–14] and the need for
improved marine resource management [1].

From a geological perspective, the Coral Triangle hotspot
is relatively young [15]. Throughout the Paleogene (∼65–
23 mya), tropical ocean formed an essentially continuous
belt around the globe, with the Atlantic and Pacific basins
connected by the Tethys Sea. During much of this time, the
global center of marine biodiversity was found in the western
Tethys Sea, as indicated by fossil beds in what is now the
Mediterranean Sea [15–17]. In the late Eocene, this center
shifted east to what is now the Arabian Peninsula, with the
initial collision of Africa and Eurasia and the rifting of the
Arabian plate [17, 18]. Continued west−to−east collision of
Africa and Eurasia then constrained both of these hotspots,
and finally closed off the Tethys Sea about 19 mya, and the
center of biodiversity moved to its current position in the
middle of the Indo-Pacific. A large component of biodiversity
in the Coral Triangle must then consist of taxa that shifted
their ranges from earlier centers of diversity [19–21] (see
Harzhauser et al. [22] for a detailed example from the
Tridacnidae).

Around the time that taxa from the diminishing Tethyan
hotspots began to invade the Indo-Pacific, tectonic processes
were producing more diversification in situ. Until the begin-
ning of the Miocene about 23 mya, diversity within the Coral
Triangle was surprisingly low across many taxa, ranging from
zooxanthellate corals to mangroves (“The Paleogene Gap”)
[16, 17]. At about this time, roughly coincident with the
closure of the Tethys Sea, the Australian plate began to collide
with island arcs in the Pacific, and the southeast margin of
the Eurasian plate, dramatically altering surface circulation
and effectively defining the modern basins of the Indian
and Pacific Oceans [23]. Numerous phylogenetic studies of
Indo-Pacific fish and gastropod taxa have found that most
diversification occurred following this collision, during the
Miocene [21, 24–27], and some have even found a distinct
pulse of lineage diversification associated with the timing of
the collision around 20 to 25 million years ago [20, 28]. Thus,
the initial formation of the complex Coral Triangle seascape
in the middle of the Indo-Pacific appears connected to its
high levels of biodiversity.

While the timing of the appearance of the much of
the biodiversity of the Coral Triangle is apparent, the
mechanisms that promoted the concentration of biodiversity
remain unclear. Published conjectures on the evolutionary
processes behind this biogeographic phenomenon are prob-
ably more numerous than any other single topic in marine
biogeography (recently reviewed in Hoeksema [2]). The
many hypotheses that attempt to explain the diversification
and persistence of species can be generalized as accumula-
tion, origin, overlap, and refuge hypotheses. The center of
accumulation hypothesis suggests peripatric speciation on

islands peripheral to the Coral Triangle [40, 41], followed
by subsequent biogeographic dispersal and accumulation
in the biodiversity hotspot. Alternatively, within the Coral
Triangle, complicated marine currents and a history of sea
level changes have variously connected and isolated marine
populations. This complex interaction of geological and
oceanographic processes could have promoted vicariance,
and therefore the Coral Triangle has been proposed as a
center of concentrated speciation that played a major role in
the origin of the Indo-Pacific fauna [6, 42, 43]. The Coral
Triangle is also an obvious area of potential admixture, or
overlap, of diverse Indian and Pacific Ocean biotas such as
geminate pairs of fishes [3, 44] and spiny lobsters [45, 46].
This separation of Pacific and Indian Ocean biotas coincides
with a major marine biogeographic break referred to as the
Sunda Shelf Barrier [47, 48]. Perhaps most consequentially,
the marine habitats of the Coral Triangle are highly diverse
and extensive. The Sunda and Arafura shelves represent the
largest tropical continental shelf area on earth [49]. This
abundant and varied habitat has led many to hypothesize
that the Coral Triangle is an area of relative refuge from
extinction [9, 16, 50].

Although hypotheses to explain the biodiversity of
the Coral Triangle abound, the empirical work is limited
and has not yet provided much clarity [51]. Traditional
area cladogram tests have been attempted [4] but these
are inconclusive: “It is possible that, with the addition
of more taxa, additional patterns would emerge. Much
more systematic work within the East Indies is required
to resolve this problem” [52]. However, phylogenetic and
phylogeographic tests of the above hypotheses also vary
in their conclusions, seemingly dependent on the taxon,
methodology and sampling strategy. Some taxa appear
to show an abundance of peripatric speciation (e.g., [53,
54]) while others seem to be diverging within the Coral
Triangle (e.g.,[29, 34, 55]). Many taxa show evidence that
the extensive and varied habitats of the Coral Triangle help to
lower their risk of extinction [25, 26] while there is molecular
and paleontological evidence of frequent local extinctions on
peripheral islands [56–60].

It has repeatedly been noted that the above hypotheses
are not mutually exclusive—that all of the above processes
are potentially building biodiversity in the Coral Triangle [7,
8, 51]. A similar conclusion has been reached for the diversity
center in the Caribbean [61]. This nonexclusivity, together
with broadly similar predictions from each hypothesis and
a flock of inconsistently applied definitions has often shed
more heat than light on the Coral Triangle hotspot [10, 62].
For example, the distinction between vicariant and peripatric
speciation can be blurred, especially for marine species,
because evolutionarily significant levels of gene flow among
disjunct populations can be maintained by infrequent pulses
of long-distance larval dispersal [63, 64]. Perhaps what is
needed is a new hypothetical framework that focuses on
process rather than pattern (e.g.,[65]).

At present, the most urgent question about Coral
Triangle biodiversity is how it can be protected in the
face of assorted anthropogenic alterations of the marine
environment [12, 14]. To do this, we will need to be able to
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precisely identify the evolutionary processes by which marine
species in this region (1) diversify and (2) persist. Com-
parative phylogeography provides a means to test specific
hypotheses regarding these processes [66, 67]. Diversification
and persistence are also the two main processes that underpin
all hypotheses that attempt to explain the biodiversity of the
Coral Triangle. In terms of diversification, what now seems
clear is that many taxa that are recognized at the species
level and above largely precede the sea−level fluctuations of
the Pleistocene [16, 17, 20, 26, 28]; for possible exceptions
see [3, 45]. However, phylogeographic surveys of the Coral
Triangle have uncovered numerous cryptic lineages that may
represent newly formed (or forming) species [29, 33, 34, 53].
Perhaps by studying these recent speciation events in detail,
we can better understand the tempo and mode of speciation
in and around the Coral Triangle. In addition, the population
boundaries delineated by concordant patterns in phylogeo-
graphic studies can serve as management units for fisheries
management and marine protected area planning [40, 68–
71]. With regard to the persistence of marine species, the
major evolutionary process to consider is gene flow. Marine
habitats are generally patchy at many spatial scales, and this
is particularly so for the reef fauna of the Coral Triangle.
Most reef species ranges in this region span broad stretches
(∼1–500 km) of pelagic ocean that can only be crossed by
a pelagic larval stage. While genetic methodologies tend to
be swamped by ecologically relevant levels of gene flow, they
can be useful in detecting areas across which gene flow is
low or nonexistent, or mediated by intermediate “stepping-
stone” populations [34, 71]. Furthermore, coupling genetic
connectivity studies with oceanographic models can help
reveal barriers to larval dispersal and source (upstream)
versus sink (downstream) population dynamics that will be
helpful in establishing networks of marine protected areas
[72]. Phylogeographic pattern relates primarily to genetic
connectivity at evolutionary time scales and not necessarily
to demographic connectivity at more ecological time scales
[73–75]. However, the presence of shared phylogeographic
breaks is evidence of demographic independence of phylo-
geographic regions. Phylogeography in the Coral Triangle is
still very much in its nascent phase. Our purpose is to review
phylogeographic patterns that have thus far been uncovered
in the Coral Triangle and to determine if these patterns can
be used to improve marine management schemes.

2. Invertebrate Phylogeographic Pattern

Early phylogeographic studies spanning the Coral Triangle
region showed evidence of pronounced divergence among
Pacific and Indian populations. Lavery et al. [76] first
reported this pattern of Pacific−Indian Ocean divergence
in the coconut crab, Birgus latro. Similar patterns were
subsequently reported in the blue sea star, Linckia laevigata
[77, 78], the tiger prawn, Penaeus monodon [79], and the
crown of thorns sea star Acanthaster plancii [80], which
has arguably fragmented into four distinct species [32].
Explanations for this pattern uniformly invoke vicariance
among Pacific and Indian Ocean basins during Pleistocene
low sea level stands. While these early studies provided the

first glimpses of lineage diversification within and around
the Coral Triangle, they often included only a few, if
any, populations from within the Coral Triangle, limiting
the inferences that could be drawn regarding evolutionary
processes within the Coral Triangle.

Extending phylogeographic studies into the Coral Tri-
angle have revealed a more complex picture of processes
acting in this region. Early studies on Linckia laevigata
indicated Pleistocene vicariance [77], and subsequent studies
with more intensive sampling within the Coral Triangle
support the notion of a Sunda Shelf barrier (Figure 1) but
also show that the Coral Triangle is a region of admixture
of Pacific and Indian Ocean lineages [30, 88]. Further
genetic structuring of L. laevigata within the Coral Triangle
has also been demonstrated in the western Philippines
using allozymes [31]. Early allozyme genetic studies on L.
laevigata revealed genetic differences between the Indian
and Pacific Ocean populations dominated by two different
color morphs: royal blue morph in the Western Pacific and
an orange or apricot morph in the Indian Ocean [78].
Williams [89] demonstrated that orange and blue morphs
shared the same mitochondrial DNA. However, allozyme
and COI nucleotide sequence analysis suggested genetic
differentiation between sympatric blue and orange color
morphs found in the Kalayaan Island Group in western
Philippines [90]. Moreover, there was significant fine-scale
genetic structure among populations of the both color
morphs in the South China Sea and Sulu Sea. Crandall et
al. [30] showed evidence of regional isolation of L. laevigata
in Cenderawasih Bay, a phylogeographic break in eastern
Indonesian that is seen in another sea star, Protoreaster
nodosus.

The first phylogeographic studies to focus intensively
within the Coral Triangle examined the mantis shrimp,
Haptosquilla pulchella [91, 92]. The initial study indicated
strong population genetic breaks between the Lesser and
Greater Sunda Islands and populations to the north [91].
Expanding the range of the mantis shrimp study eastward
[39] indicated that an additional population break for
H. pulchella transects the Bird’s Head region of Papua
New Guinea (Figure 1). This led to a hypothesis that the
oceanographic feature referred to as the Halmahera Eddy
may serve as a barrier to larval dispersal westward into the
Celebes, Molucca, and Banda Seas [29]. This eddy is a result
of the New Guinea Coastal Current (an arm of the Southern
Equatorial current) interacting with the Equatorial Counter
Current [39] (Figure 1). The resulting eddy limits east to
west water transport across the Molucca Sea, presumably
limiting larval dispersal and gene flow as well. Phylogeo-
graphic data from two additional mantis shrimp species [29],
Haptosquilla glyptocercus and Gonodactylinus viridis as well as
10 additional species of stomatopod [Barber et al., in review]
corroborate an eastern Indonesian population break east
and west of Halmahera and also a break near the southern
Sunda Shelf (Figure 1). While these studies as well as earlier
work on Birgus latro and Penaeus monodon suggest that
genetic structure in the Coral Triangle is a common feature
of crustaceans, work on the symbiotic shrimp, Periclimenes
soror, shows no evidence of structure across the Coral
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Figure 1: Major oceanographic surface currents and phylogeographic breaks in the Coral Triangle inferred from relative frequency pie chart
figures of highly divergent clades, lineages, or haplotypes from published papers on invertebrates (Haptosquilla pulchella [29], Haptosquilla
glyptocercus [29], Gonodactylinus viridis [29], Linckia laevigata [30, 31], Protoreaster nodosus [30], Acanthaster planci [32], Nerita albicilla
[33], Tridacna crocea [34–36], Tridacna maxima [37], and Echinolittorina trochoides [38]). HE : Halmahera Eddy, ME : Mindanao Eddy,
ITF : Indonesian Throughflow, NEC : Northern Equatorial Current, NECC : Northern Equatorial Counter Current, and NGCC : New Guinea
Coastal Current (after Schiller [39]).

Triangle, despite strong phylogeographic structure in their
host sea stars, Linckia laevigata and Protoreaster nodosus [30].

Studies of both bivalves and gastropods reveal population
breaks across the Coral Triangle. Independent studies on
the giant boring clam [34, 35], Tridacna crocea show
phylogeographic breaks at the Sunda Shelf and in eastern
Indonesian (Figure 1). On the eastern Philippine seaboard,
north−south genetic structure broadly concordant with the
bifurcation of the Northern Equatorial Current as well
as significant fine-scale genetic differentiation was found
for T. crocea populations [36]. Similarly, fine−scale genetic
structuring in T. crocea populations in the shelf and shoal
reefs of western Philippines has been demonstrated using
allozymes [31]. Another giant clam, Tridacna maxima, shows
a deep phylogenetic break in the Java Sea, between Eastern
and Western Indonesia [37]. The periwinkles, Echinolittorina
trochoides, Echinolittorina vidua [38], and Nerita albicilla
[33], also show population breaks that correspond to the
western Sunda Shelf Barrier (Figure 1). However, as with
sea stars, this pattern is absent in the parasitic gastropod,
Thyca crystallina, even though there is strong structure in
its host, Linckia laevigata [30, 88]. Additional evidence of
structure within the Coral Triangle comes from limpets of
the Patelloida profunda group [93] and the abalone Haliotis

asinina [94]. The former study showed clades associated with
Pacific and Indian Oceans, although the age of these lineages
date back to the Miocene, suggesting a much deeper history
to the patterns in this group.

Studies on additional invertebrates provide further evi-
dence of population structure across the Coral Triangle.
Regional structure is seen in the barnacle Chthamalus
malayensis [95], in the coral reef sponge Leucetta chagosensis
[81], and the scleractinian coral Heliofungia actiniformis
[96]. However, sampling was insufficient to show exactly
where these genetic breaks occurred in the Coral Triangle.
Regional phylogeographic breaks were not present in two
species of reef-building corals, Pocillopora damicornis and
Seriatopora hystrix, although high levels of genetic divergence
among many populations were observed [97].

3. Fish Phylogeographic Pattern

Tests of phylogeographic pattern using marine fish have
varied spatial coverage across the Coral Triangle. Perrin
and Borsa [98] demonstrated an apparent population break
between Sulawesi and Borneo with the nearshore pelagic
Indian Scad, Decapterus russelli (Figure 2), but the only
sample site in eastern Indonesia was on northwestern
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Sulawesi. Ablan [99] suggested four separate management
units based on population data from Dascyllus trimaculatus
[82] and Thalossoma hardwickii [83] corresponding to the
Sunda Shelf, the South China Sea, the Pacific Ocean, In
contrast to invertebrate and the Philippines plus eastern
Indonesia. Leray et al. [84] also demonstrated a broad
geographic break consistent with a Sunda Shelf barrier
for D. trimaculatus. Drew and Barber [87] demonstrated
a strong genetic break consistent with the western Sunda
Shelf Barrier in the Lemon Damsel Pomacentrus moluccensis.
Lourie et al. [85] studied four species of seahorse around
Southeast Asia and found population breaks within the
Philippines, north−south and east−west across the Coral
Triangle, and corresponding to the western Sunda Shelf
Barrier (Figure 2). Timm et al. [55] tested connectivity with
the False Clown Anemonefish, Amphiprion ocellaris, and
found population breaks corresponding to the southern
Sunda Shelf Barrier, easternmost Indonesia, and a broad
north−south break (Figure 2). Based on allozyme analysis,
Magsino et al. [86] demonstrated a phylogeographic break
in Siganus fuscescens consistent with the Northern Equatorial
Current Bifurcation in eastern Philippines (Figure 2). This
population break in S. fuscescens was further validated by
analyses of the mtDNA control region that also suggests
isolation of the South China Sea basin and fine-scale
structuring within the South China Sea and southern
Philippine Sea [100]. Although phylogeographic pattern in
fishes supports Sunda Shelf, easternmost Indonesia breaks,
and the northeastern and southeastern Philippine break
consistent with some invertebrates, corroboration is lacking
for other phylogeographic breaks.

Phylogeographic structure has been detected in a number
of fish species studied widely across the Indo−Pacific with
limited samples within the Coral Triangle and therefore
could not detect breaks within the Coral Triangle. These
include the surgeonfish Acanthurus triostegus [101], the
milkfish Chanos chanos [102], the parrotfish Chlorurus
sordidus [103], and the snapper Lutjanus fulvus [104]. High
levels of microspatial genetic structure have been detected
in the Banggai cardinalfish, Pterapogon kauderni, but this
is limited to a small area in eastern Indonesia [105–107].
Other studies sampled disparate sites or limited genes
within the coral triangle and broadscale phylogeographic
breaks cannot be inferred. These include the clownfish
Amphiprion ocellaris [108], the wrasse Thalossoma hardwicki
[83], the snapper Pristipomoides multidens [109], the scad
mackerel Decapterus russelli [110], and the Spanish mackerel
Scomberomorus commerson [111].

4. Species without Apparent Phylogeographic
Breaks across the Coral Triangle

In addition to evident barriers to gene flow across the
Coral Triangle, a number of species exhibit apparent lack
of phylogeographic breaks across the region. This includes
the sea urchins Eucidaris, Diadema, and Tripneustes [112–
114], the marine snails Echinolittorina reticulata [38] and
Nerita plicata [33], the nearshore pelagic scads Decapterus

macrosoma and Decapterus macarellus [115], the trumpetfish
Aulostomus chinensis [116], three species of surgeonfishes
of the genus Naso [117, 118], and the Eastern Little Tuna
Euthynnus affinis [119]. Although sites were not sampled
within the Coral Triangle, the Bigscale Soldierfish, Myripristis
berndti, also apparently does not show phylogeographic
structure across the Indo−West Pacific [120]. The lack
of phylogeographic structure across the Coral Triangle is
surprising given Pleistocene fluctuations in sea level that
potentially restricted gene flow. These species may have
continued to successfully disperse through the Coral Tri-
angle during periods of glacial maxima, reestablished gene
flow quickly after glacial maxima, lost divergent lineages,
undergone selective sweeps, or simply did not span the
Coral Triangle during glacial periods [30, 121]. One other
possibility is that the genetic markers or sample sizes used
were not adequate to detect population structure.

5. Concordant Phylogeographic Pattern

The numerous marine phylogeographic patterns in the Coral
Triangle, above, strongly support a western Sunda Shelf
Barrier. The Sunda Shelf was emergent during Pleistocene
low sea level stands, which would have limited larval
transport and genetic exchange among Pacific and Indian
Ocean populations on either side of the shelf, promoting
lineage diversification. Similarly, the increasing numbers of
studies focused within the Coral Triangle are beginning to
corroborate an eastern Indonesia barrier in vicinity of the
Mindanao and Halmahera Eddies (Figures 1 and 3) where
physical oceanographic processes constrain water exchange,
and thus larval transport and gene flow. However, the
number of studies in this region is still limited. Further-
more, sample coverage is particularly sparse in some areas,
especially in the Philippines, Malaysia, Papua New Guinea,
the Solomon Islands, East Timor and the Borneo, Sumatra,
and Banda Sea regions of Indonesia, making it difficult to
corroborate barriers to lineage diversification elsewhere.

Phylogeographic patterns in invertebrates (Figure 1) are
highly concordant in the western and southern Coral
Triangle but coverage of sample sites in the northern,
eastern, and southeastern Coral Triangle is sparse. Six species
exhibit barriers to gene flow corresponding to western
peninsular Malaysia and western Sumatra. This population
level break closely follows the Sunda Shelf Barrier, a major
biogeographic break between Indian and Pacific Ocean
biotas [47]. The three concordant phylogeographic breaks
along the southern edge of the Sunda Shelf and the Lesser
Sunda Island chain also correspond to this barrier. However,
the population breaks occur in the region north of Java in
the Java Sea [37, 91] and between the Lesser Sunda Islands
and Sulawesi [29]. Hypotheses relating to this northern
orientation of phylogeographic breaks in the southern region
of the Sunda Shelf Barrier still need to be formulated and
tested.

Seven species of invertebrates show phylogeographic
breaks in eastern Indonesia consistent with the Bird’s head
region of New Guinea, specifically, Cenderawasih Bay (see
[29], Barber et al. in review). Seven species of invertebrates
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also show population structure in this region but more
consistent with the area of Halmahera (see [30, 34], Barber
et al. in review), and six species show divergence among
populations among the Western Papua, Indonesia, and
Papua New Guinea [Barber et al. in review].

In contrast to invertebrate phylogeography in the Coral
Triangle, patterns from fishes are not highly concordant.
Population breaks in a seahorse [85], a clownfish [55],
the Lemon Damsel [87], and the Threespot Dascyllus [84]
corroborate the Sunda Shelf Barrier seen in invertebrates.
Similarly, data from the clownfish Amphiprion ocellaris
corroborates an eastern Indonesian barrier (see [55], Barber
et al. unpublished data). While phylogeographic concordance
in fishes is not as strong as in invertebrates, this pattern likely
has both methodological as well as biological origins.

The apparent lack of consistent concordance in fish
phylogeographic patterns in comparison to invertebrates is
almost certainly partially an artifact of sample coverage.
Several of the recent invertebrate studies are part of coor-
dinated efforts to intensely sample multiple codistributed
taxa across Indonesia [29, 30, 33–35], while others focus
sampling more widely across the Pacific and Indian Oceans
[32, 34, 38]. In contrast, fish sampling in the Coral Triangle
has largely been restricted to a specific region in the
Philippines or in Indonesia [86, 98] has been widespread
across Southeast Asia but with uneven sample coverage either
within Indonesia or within the Philippines [55, 85, 99],
or corresponds to a wide Indo−Pacific coverage [84, 87].
The varied levels of concordance between different sampling
programs highlights the importance of systematic sampling
of multiple species across broad spatial scales in order
to accurately identify phylogeographic boundaries in this
region. It is likely that as more coordinated sampling efforts
are conducted on fish in this region that more examples of
concordance will emerge, improving our understanding of
the evolution of biodiversity in the Coral Triangle.

While there will certainly be more examples of concor-
dance in fish taxa, the intrinsic differences in life histories in
invertebrate and fish will likely result in more examples of
phylogeographic discordance in fish than invertebrates. The
characteristics and interplay of mobility of larvae and adults
are typically different in invertebrates versus fishes. With the
exception primarily of crustaceans, invertebrate larvae are
poor horizontal swimmers [122] although they can influence
their dispersal through active vertical swimming. Conse-
quently, dispersal and recruitment in invertebrates may
generally be more passive and more predictable from ocean
circulation patterns than for fishes although the similarities
in phylogeographic structure in the giant clam (Tridacna
crocea) and clownfish (Amphiprion ocellaris) suggest that this
may not be the case. Fish larvae, on the other hand, are
generally more active and have been shown to return to
their natal population and restrict genetic mixing between
populations [123, 124]. This reduces effective population
size and allows faster, stochastic sorting and can result in an
unpredictable mosaic of population structure. This is exem-
plified in Amphiprion [55] and Hippocampus [85] that have
relatively short larval dispersal durations for fish (e.g., 10–14
days in Amphiprion). All the invertebrates and nearly all the

fishes reviewed in this study show limited mobility and/or
site specificity as adults and, therefore, differences in genetic
structure are expected from differences in larval mobility
and biogeographic history. Exceptions to this are pelagic and
wide−ranging demersal fishes and cephalopods. Dispersal
and hence phylogeographic pattern in these forms can be
heavily influenced by adult mobility except when localized
spawning aggregations may influence genetic patterns. In this
paper, only the nearshore pelagic scad, Decapterus russelli, is
highly mobile as an adult and this species showed a unique
phylogeographic break (Figure 2). Two other nearshore scad
species showed no genetic structure in this area [115], which
is consistent with low levels of molecular divergence found in
other species of pelagic fishes [121].

6. Management Implications

6.1. Concordant Phylogeographic Breaks Suggest Broad Man-
agement Units. Phylogeographic studies in the Coral Tri-
angle are still at an early stage but existing concordant
phylogeographic breaks suggest broad management units
across the western and southern Coral Triangle (Figures 3
and 4). These units appear robust because they are corrob-
orated across multiple taxa and multiple loci [47, 69–72].
The Sunda Shelf biogeographic barrier [47], resoundingly
corroborated by phylogeographic studies (Figure 3), sug-
gests natural management divisions between east and west
Sumatra and between the Andaman Sea and the Gulf of
Thailand (Figure 4). A concordant phylogeographic break to
the north of Java and the Lesser Sunda Islands suggest that
these constitute a natural management unit. A large portion
of eastern Indonesia that includes most of the seas east of
Borneo appears to be a natural management unit. Halmahera
to the westernmost Bird’s Head region of Papua also appears
to be a management unit that may either be discrete or a
subunit of an eastern Indonesia management unit. Further
phylogeographic studies are needed to corroborate this. This
division supports ecosystem-based fisheries management
efforts in the Bird’s Head Seascape around Raja Ampat
[125]. Populations around Cenderawasih Bay are typically
divergent from those to the west, and therefore the northern
Papua region could be managed separately. In eastern Philip-
pines, two species corroborate a phylogeographic break
that corresponds with the Northern Equatorial Current
Bifurcation [36, 86], and this suggests that northeastern
and southeastern Philippines should be treated as separate
management units.

6.2. Concordance of Phylogeographic Pattern with Currents
and Ecoregions. Marine management schemes that utilize
population genetic data are considered stronger if combined
with supporting evidence from oceanographic data and
other supporting approaches [72]. The dominant surface
ocean circulation features in Indonesia in terms of volume
of transport [39] are the Indonesian Throughflow from the
Pacific, and the Halmahera and Mindanao eddies that feed
the Northern Equatorial Counter−Current (Figure 1). The
Halmahera Eddy was postulated as the main reason for
phylogeographic breaks in eastern Indonesia [29]. However,
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Figure 4: Approximate minimum management units inferred from concordant phylogeographic breaks. Although no phylogeographic
break was evident east to west across the Java Sea, we assume that the Sunda Shelf biota is distinct from eastern Indonesia and these warrant
their own management strategy.

with recent ocean circulation reanalyses it is likely that
the Mindanao Eddy also plays a significant role in eastern
Indonesia depending on the monsoon season [39]. Both
these eddies, together with the concordant phylogeographic
breaks, support the idea of delineating separate management
units in eastern Indonesia. The predominantly separate
ocean circulation between the Sunda Shelf and the Indian
Ocean also supports the use of the Sunda Shelf phylo-
geographic breaks as demarcating management units. The
southern Sunda Shelf break north of Java and the Lesser
Sunda Islands is not strongly supported by ocean circulation.
The Indonesian Throughflow suggests a strong north to
south surface flow from the Makassar Straits across the
Java Sea during the Southeast Monsoon [39]. However,
during the Northwest Monsoon this flow is weak and the
predominant current is east to west in the Java Sea that
could restrict gene flow with populations to the north.
While the phylogeographic patterns in this region may have
historical origins, their persistence through contemporary
oceanographic conditions strongly suggests that gene flow
must be severely limited among these regions [29] arguing
for the ecological independence of these regions.

Concordant phylogeographic pattern in the Philippines
corresponds with the bifurcation of the Northern Equatorial
Current. However, these are corroborated by only two pub-
lished studies in the eastern Philippines [36, 86]. The mean
latitude of the transition of the Northern Equatorial Current
into separate northern and southern directed boundary
currents has been reported as high as 15.5◦N [126], but
more recently it has been reported at 13.3◦N, although this
fluctuates to 14.0◦N in January and to 12.5◦N in July [127].

Additional phylogeographic and oceanographic studies
are needed to refine management units across the Coral

Triangle. Particularly useful will be studies that integrate
estimates of genetic connectivity with predictions from com-
puter models of connectivity based on physical oceanogra-
phy so that the impact of physical oceanography on realized
dispersal and connectivity can be rigorously examined in a
quantitative, rather than qualitative, fashion.

Marine ecoregions based on floral and faunal composi-
tion, major physical and biological oceanographic features
and expert opinion have also been proposed as a means
of delineating units of marine management [1, 128]. Cou-
pling these approaches with phylogeographic breaks may
strengthen management. However, on the surface there
appears to be limited agreement between units suggested
by phylogeographic breaks and ecoregions proposed from
metadata analysis and expert opinion [128] or patterns
of coral biodiversity [1]. Proposed ecoregions do separate
the Sunda Shelf from the Indian Ocean and both north
and south Lesser Sunda Islands are independent units. In
addition, ecoregions corroborate phylogeographic breaks
separating Eastern Indonesia. Aliño and Gomez [129]
also recognize northeastern and southeastern biogeographic
regions corresponding to the Northern Equatorial Current
Bifurcation. Coral biodiversity also suggests Cenderawasih
Bay as a separate unit.

The correspondence between some of the marine ecore-
gions and published phylogeographic breaks suggests that
some ecoregions are indeed functioning as ecologically
independent units. However, there are far fewer recognized
phylogeographic breaks than ecoregions. This result could
be interpreted that the marine ecoregion approach is flawed.
Instead, this result most likely reflects the fundamental
difference in the methods used to determine ecoregions and
the genetic connectivity and the limits of genetic methods
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to recover ecological independence among regions. Genetic
patterns evolve over periods of hundreds and thousands of
years. However, small levels of gene flow that can have a
profound impact on genetic patterns may be inconsequential
demographically [73–75]. Thus, while the presence of strong
phylogeographic breaks confirms the demographic indepen-
dence of two spatially distinct populations, the absence of
phylogeographic structure does not necessarily indicate that
two populations are connected by ecologically relevant levels
of larval dispersal. It remains to be seen whether more
rapidly evolving genetic markers can provide additional
support to the proposed marine ecoregions in the Coral
Triangle. However, the recovery of multiple phylogeographic
breaks in the region of Cenderawasih Bay does indicate the
demographic independence of some species in this region,
suggesting that the boundaries of these ecoregions may need
to be modified.

6.3. Future Directions for Management Strategy. While con-
cordant phylogeographic patterns exist for Indonesia and
eastern Philippines, data are insufficient to draw any
broad−scale patterns elsewhere in the Coral Triangle, par-
ticularly for most of the Philippines and Malaysia. Corrob-
orated phylogeographic breaks are also largely incomplete
at finer scales within the Coral Triangle, although some
fine−scale population structure, such as around Palawan
[31], has been reported. Most fine-scale studies to date have
largely focused on individual countries, rather than the entire
Coral Triangle. As additional studies are conducted, more
unique phylogeographic regions and management areas may
be identified. Similarly, more connections among nations
may also be identified. For example data for giant clams
(DeBoer et al. in review) and stomatopods (Barber et al. in
review) both indicate high genetic similarity between Philip-
pine and Central Indonesian populations, indicating that
management planning will likely need to span international
borders.

The recovery of concordant phylogeographic breaks indi-
cates the evolutionary, and thus demographic, independence
among regions of the Coral Triangle. These results suggest
management units although it should be recognized that
these are general guidelines as many species do not follow
the general pattern. The spatial scales of genetic structuring
depend on the life history of species and local factors
that affect larval transport and recruitment success. Genetic
patterns are also a result of many stochastic processes
and changing physical processes may result in different
phylogeographic pattern. As such, it is unclear whether
lack of corresponding phylogeographic breaks in some taxa
are the result of unique biological factors that should be
incorporated into management plans or are the result of
stochastic genetic processes, despite the physical environ-
ment having the same impact on codistributed species. Given
this uncertainty and the range of responses across multiple
taxa in the Coral Triangle, species−specific management
interventions within large−scale management units should
be complemented by networks of marine protected areas
that take into consideration representative habitat types to
enhance protection of species and genetic diversity of highly

exploited species. These nested scales of management units
reflect the large-scale (evolutionary time scales or vicariance)
versus small-scale (ecological and isolation by distance)
factors influencing phylogeographic pattern.

7. Conclusions

Phylogeography in the Coral Triangle is young, even in
comparison to the rest of this burgeoning field. Most of
the studies reviewed here were published in the last ten
years, and most are limited to inference from mitochondrial
genes. However, the abundance of cryptic mitochondrial
lineages identified thus far strongly suggests not only that
biodiversity in this global marine hotspot is even higher
than expected, but also that new species are forming as we
write. Broadly speaking, the Coral Triangle may represent
the world’s largest suture zone [130, 131], in which divergent
genomes from Pacific and Indian Oceans are periodically
brought back into contact by rising sea levels [33, 132, 133].
Confirmation awaits results from nuclear loci, but we can
readily see evidence of a suture zone in high numbers of
hybrid reef fish observed at Christmas and Cocos Islands
off the coast of Sumatra [133, 134], and the broad and
parallel (but not identical) clines in color morphs, allozymes
and mtDNA clade frequencies in Linckia laevigata [30, 78,
135]. The location of mitochondrial breaks reviewed here
may not then represent the precise location of an allopatric
barrier, but the boundary at which divergent mitochondrial
genomes were reunited as they reexpanded with rising sea-
levels [136, 137]. Whether the observed phylogenetic breaks
have actually resulted from allopatric speciation will depend
on the effective population size and ecological characteristics
of each lineage (see Crandall et al. [33] for two contrasting
examples).

Where did coral reef taxa find refugia during periods of
lowered sea levels and glacial climactic regimes [138]? How
did rising sea levels and expanding populations affect genetic
diversity and local adaptation [137]? Were the resoundingly
corroborated phylogeographic breaks present today, also
present during previous glacial minima? Will additional
studies corroborate these breaks and potentially reveal addi-
tional phylogeographic breaks? Did these phylogeographic
breaks lead to lineage diversification and contribute to
the extreme diversity found in the Coral Triangle? These
questions and others can only be addressed with data from
multiple unlinked genetic markers. Next generation sequenc-
ing technologies will soon provide relatively inexpensive
access to genetic information from across the genome of
many codistributed species [139]. This influx of data, in
combination with information from ecological niche models
[140] and biophysical models of larval dispersal [141], will
allow us to address these questions with increasing accuracy.

Future studies of population genetics in the Coral
Triangle will also further address management questions in
this oceanographic, geologic, and biogeographic complex
archipelago. Further delineation of population structure will
allow management decisions to be made within a biological
framework rather than in an administrative framework of
convenience that may not be as effective. Assignment tests
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and parentage analysis are already helping to provide
empirical estimates of larval dispersal within networks of
marine−protected areas [142, 143]. The application of
a nested small-scale management area within large scale
management area approach to applied phylogeography can
help preserve the rich resources and biodiversity of the Coral
Triangle for future generations.
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genetic structure of the milkfish, Chanos chanos, based on
PCR-RFLP analysis of the mitochondrial control region,”
Marine Biology, vol. 145, no. 4, pp. 789–801, 2004.

[103] L. K. Bay, J. H. Choat, L. van Herwerden, and D. R.
Robertson, “High genetic diversities and complex genetic
structure in an Indo-Pacific tropical reef fish (Chlorurus
sordidus): evidence of an unstable evolutionary past?” Marine
Biology, vol. 144, no. 4, pp. 757–767, 2004.

[104] M. R. Gaither, R. J. Toonen, D. R. Robertson, S. Planes, and
B. W. Bowen, “Genetic evaluation of marine biogeographical
barriers: perspectives from two widespread Indo-Pacific
snappers (Lutjanus kasmira and Lutjanus fulvus),” Journal of
Biogeography, vol. 37, no. 1, pp. 133–147, 2010.

[105] G. Bernardi and A. Vagelli, “Population structure in Banggai
cardinalfish, Pterapogon kauderni, a coral reef species lacking
a pelagic larval phase,” Marine Biology, vol. 145, no. 4, pp.
803–810, 2004.

[106] E. A. Hoffman, N. Kolm, A. Berglund, J. R. Arguello, and
A. G. Jones, “Genetic structure in the coral-reef-associated
Banggai cardinalfish, Pterapogon kauderni,” Molecular Ecol-
ogy, vol. 14, no. 5, pp. 1367–1375, 2005.

[107] A. Vagelli, M. Burford, and G. Bernardi, “Fine scale dispersal
in Banggai Cardinalfish, Pterapogon kauderni, a coral reef
species lacking a pelagic larval phase,” Marine Genomics, vol.
1, no. 3-4, pp. 129–134, 2008.

[108] J. S. Nelson, R. J. Hoddell, L. M. Chou, W. K. Chan, and V.
P. E. Phang, “Phylogeographic structure of false clownfish,
Amphiprion ocellaris, explained by sea level changes on the
Sunda shelf,” Marine Biology, vol. 137, no. 4, pp. 727–736,
2000.

[109] J. R. Ovenden, J. Salini, S. O’Connor, and R. Street, “Pro-
nounced genetic population structure in a potentially vagile
fish species (Pristipomoides multidens, Teleostei; Perciformes;
Lutjanidae) from the East Indies triangle,” Molecular Ecology,
vol. 13, no. 7, pp. 1991–1999, 2004.

[110] A. Rohfritsch and P. Borsa, “Genetic structure of Indian
scad mackerel Decapterus russelli: Pleistocene vicariance and
secondary contact in the Central Indo-West Pacific Seas,”
Heredity, vol. 95, no. 4, pp. 315–326, 2005.

[111] Z. H. Sulaiman and J. R. Ovenden, “Population genetic
evidence for the east-west division of the narrow-barred
Spanish mackerel (Scomberomorus commerson, Perciformes:
Teleostei) along Wallace’s Line,” Biodiversity and Conserva-
tion, vol. 19, pp. 563–574, 2009.

[112] H. A. Lessios, B. D. Kessing, D. R. Robertson, and G. Paulay,
“Phylogeography of the pantropical sea urchin Eucidaris in
relation to land barriers and ocean currents,” Evolution, vol.
53, no. 3, pp. 806–817, 1999.

[113] H. A. Lessios, B. D. Kessing, and J. S. Pearse, “Population
structure and speciation in tropical seas: global phylogeog-
raphy of the sea urchin Diadema,” Evolution, vol. 55, no. 5,
pp. 955–975, 2001.

[114] H. A. Lessios, J. Kane, and D. R. Robertson, “Phylogeography
of the pantropical sea urchin Tripneustes: contrasting pat-
terns of population structure between oceans,” Evolution, vol.
57, no. 9, pp. 2026–2036, 2003.

[115] S. Arnaud, F. Bonhomme, and P. Borsa, “Mitochondrial DNA
analysis of the genetic relationships among populations of
scad mackerel (Decapterus macarellus, D. macrosoma, and D.
russelli) in South-East Asia,” Marine Biology, vol. 135, no. 4,
pp. 699–707, 1999.

[116] B. W. Bowen, A. L. Bass, L. A. Rocha, W. S. Grant, and D. R.
Robertson, “Phylogeography of the trumpetfishes (Aulosto-
mus): ring species complex on a global scale,” Evolution, vol.
55, no. 5, pp. 1029–1039, 2001.

[117] O. S. Klanten, J. H. Choat, and L. van Herwerden, “Extreme
genetic diversity and temporal rather than spatial partition-
ing in a widely distributed coral reef fish,” Marine Biology,
vol. 150, no. 4, pp. 659–670, 2007.

[118] J. B. Horne, L. van Herwerden, J. H. Choat, and D. R.
Robertson, “High population connectivity across the Indo-
Pacific: congruent lack of phylogeographic structure in three
reef fish congeners,” Molecular Phylogenetics and Evolution,
vol. 49, no. 2, pp. 629–638, 2008.

[119] M. D. Santos, G. V. Lopez, and N. C. Barut, “A pilot study on
the genetic variation of eastern little tuna (Euthynnus affinis)
in Southeast Asia,” Philippine Journal of Science, vol. 139, no.
1, pp. 43–50, 2010.

[120] M. T. Craig, J. A. Eble, B. W. Bowen, and D. R. Robertson,
“High genetic connectivity across the Indian and Pacific
Oceans in the reef fish Myripristis berndti (Holocentridae),”
Marine Ecology Progress Series, vol. 334, pp. 245–254, 2007.

[121] W. S. Grant and B. W. Bowen, “Shallow population histories
in deep evolutionary lineages of marine fishes: insights from



14 Journal of Marine Biology

sardines and anchovies and lessons for conservation,” Journal
of Heredity, vol. 89, no. 5, pp. 415–426, 1998.

[122] J. -O. Irisson, C. Guigand, and C. B. Paris, “Detection and
quantification of marine larvae orientation in the pelagic
environment,” Limnology and Oceanography: Methods, vol. 7,
pp. 664–672, 2009.

[123] G. P. Jones, S. Planes, and S. R. Thorrold, “Coral reef fish
larvae settle close to home,” Current Biology, vol. 15, no. 14,
pp. 1314–1318, 2005.

[124] G. Gerlach, J. Atema, M. J. Kingsford, K. P. Black, and V.
Miller-Sims, “Smelling home can prevent dispersal of reef
fish larvae,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 104, no. 3, pp. 858–863,
2007.

[125] M. Bailey and T. J. Pitcher, Eds., “Ecological and economic
analyses of the bird’s head seascape, Papua, Indonesia: II,”
Fisheries Centre Research Reports, vol. 16, no. 1, p. 1186, 2008.

[126] Y. Y. Kim, T. Qu, T. Jensen et al., “Seasonal and interannual
variations of the North Equatorial current bifurcation in a
high-resolution OGCM,” Journal of Geophysical Research C,
vol. 109, no. 3, Article ID C03040, 19 pages, 2004.

[127] Q. Y. Wang, R. X. Cao, S. W. Zhang, and D. X. Hu, “Bifurca-
tion of pacific north equatorial current at the surface,” Science
in China, Series D, vol. 52, no. 2, pp. 227–231, 2009.

[128] M. D. Spalding, H. E. Fox, G. R. Allen et al., “Marine
ecoregions of the world: a bioregionalization of coastal and
shelf areas,” BioScience, vol. 57, no. 7, pp. 573–583, 2007.

[129] P. M. Aliño and E. D. Gomez, “Philippine coral reef
conservation: its significance to the South China Sea,” in
Development and Conservation in the Asia-Pacific Region,
Proceedings of the Regional Conference of the East-West Center
Association, K. Yamamoto, S. Ishijima, S. Sakihara et al., Eds.,
pp. 222–229, 1994.

[130] C. L. Remington, “Suture-zones of hybrid interaction
between recently joined biotas,” Evolutionary Biology, vol. 2,
pp. 321–428, 1968.

[131] G. Hewitt, “The genetic legacy of the quaternary ice ages,”
Nature, vol. 405, no. 6789, pp. 907–913, 2000.

[132] J. A. H. Benzie, “Genetic structure of coral reef organisms:
ghosts of dispersal past,” American Zoologist, vol. 39, no. 1,
pp. 131–145, 1999.

[133] J.-P. A. Hobbs, A. J. Frisch, G. R. Allen, and L. van Herwer-
den, “Marine hybrid hotspot at Indo-Pacific biogeographic
border,” Biology Letters, vol. 5, no. 2, pp. 258–261, 2009.

[134] A. D. Marie, L. van Herwerden, J. H. Choat, and J.-P. A.
Hobbs, “Hybridization of reef fishes at the Indo-Pacific
biogeographic barrier: a case study,” Coral Reefs, vol. 26, no.
4, pp. 841–850, 2007.

[135] S. T. Williams, J. Jara, E. Gomez, and N. Knowlton, “The
Marine Indo-West Pacific break: contrasting the resolving
power of mitochondrial and nuclear genes,” Integrative and
Comparative Biology, vol. 42, no. 5, pp. 941–952, 2002.

[136] N. H. Barton and G. M. Hewitt, “Analysis of hybrid zones,”
Annual Review of Ecology and Systematics, vol. 16, pp. 113–
148, 1985.

[137] L. Excoffier, M. Foll, and R. J. Petit, “Genetic consequences of
range expansions,” Annual Review of Ecology, Evolution, and
Systematics, vol. 40, pp. 481–501, 2009.

[138] D. Tager, J. M. Webster, D. C. Potts, W. Renema, J. C. Braga,
and J. M. Pandolfi, “Community dynamics of Pleistocene
coral reefs during alternative climatic regimes,” Ecology, vol.
91, no. 1, pp. 191–200, 2010.

[139] D. Tautz, H. Ellegren, and D. Weigel, “Next generation
molecular ecology,” Molecular Ecology, vol. 19, supplement
1, pp. 1–3, 2010.

[140] C. L. Richards, B. C. Carstens, and L. L. Knowles, “Distribu-
tion modelling and statistical phylogeography: an integrative
framework for generating and testing alternative biogeo-
graphical hypotheses,” Journal of Biogeography, vol. 34, no.
11, pp. 1833–1845, 2007.

[141] E. A. Treml, P. N. Halpin, D. L. Urban, and L. F. Pratson,
“Modeling population connectivity by ocean currents, a
graph-theoretic approach for marine conservation,” Land-
scape Ecology, vol. 23, no. 1, pp. 19–36, 2008.

[142] P. Saenz-Agudelo, G. P. Jones, S. R. Thorrold, and S. Planes,
“Estimating connectivity in marine populations: an empir-
ical evaluation of assignment tests and parentage analysis
under different gene flow scenarios,” Molecular Ecology, vol.
18, no. 8, pp. 1765–1776, 2009.

[143] S. Planes, G. P. Jones, and S. R. Thorrold, “Larval dispersal
connects fish populations in a network of marine protected
areas,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 106, no. 14, pp. 5693–5697,
2009.


