Applying Systems Thinking to Coastal Infrastructure Systems

David A. Pezza¹ and C. Ariel Pinto¹
Objectives

• Explore how to represent the coast as system.
• How to apply systems thinking to coastal infrastructure.
• Offer a framework to employ an integrated systems approach.
Representing the Coast as a System

- Quantify, communicate, and manage risk
- Employ an integrated systems approach
- Exercise sound leadership, management, and stewardship in decision making processes, and
- Adapt critical infrastructure in response to dynamic conditions and practice.

(ASCE, 2009, p.14)
Rising Seas

“It is change, continuing change, inevitable change, that is the dominant factor in society today. No sensible decision can be made any longer without taking into account not only the world as it is, but the world as it will be.” Sir Isaac Asimov, 1982 (p.29)

Founding of Jamestown

![Projected Global Sea Level Rise 1992-2100](image)

- Low/Historic
- Intermediate-Low
- Intermediate-High
- High

Plag (2014)
Representing an Integrated Coastal System

An Enterprise System

A Network

A network of interdependent people, processes and supporting technology not fully under control of any single entity (Mitre, 2007).

An Enterprise Systems Approach

• It represents a democratic society where no single entity is in control.
• It is structured as a network where all points are linked.
• Its behavior is emergent, that is its properties are unknown in advance and only evident as the network interacts.
• Capable of adaptation to change
Figure 1 Transformation from Network to Hierarchy

Lawson, 2005
Figure 2 Hierarchical Structure of Local Infrastructure Systems

Tier 1 – The Community

Tier 2 (a, b & c) – Network of Multiple Subsystems

Tier 2 c – Specific Subsystems

Tier 3 – Local Jurisdictions

1. Coastal Community

2a. Subsystems Infrastructure

2b. Energy
2b. Water
2b. Waste
2b. Transport
2b. Landscape
2b. Information

2c. Regional authority for collecting and treating wastewater from local jurisdictions

3. Jurisdictions - Local authorities for collecting local wastewater.

HRSD
Systems Thinking

Mechanics – Traditional Modeling (quantitative)

Context – Non-traditional Modeling (qualitative)

Emergence – Design for extreme uncertainty, interrelationships, influence and paradigm shifts

The Dilemma – a predicament that defies a satisfactory solution.

Keating, Slide 400 (2014)-modified
The best technical solution to a design may very well not be the best overall solution (Allen et al., 2004)
Table 1 The Nature of a Problem Situation

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Traditional Problem</th>
<th>Unique Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Type</td>
<td>Complicated</td>
<td>Complex</td>
</tr>
<tr>
<td>Quantifiable</td>
<td>Yes</td>
<td>Not Easily</td>
</tr>
<tr>
<td>Structure</td>
<td>Understood</td>
<td>Emergent</td>
</tr>
<tr>
<td>Approach</td>
<td>Evident</td>
<td>Not Evident</td>
</tr>
<tr>
<td>Definition</td>
<td>Clear</td>
<td>Ambiguous</td>
</tr>
<tr>
<td>Environment</td>
<td>More Static</td>
<td>More Dynamic and Turbulent</td>
</tr>
<tr>
<td>Boundaries</td>
<td>Defined</td>
<td>Ambiguous</td>
</tr>
</tbody>
</table>

Complicated Systems

- Complicated systems can have many pieces, where each component is understood in isolation and the whole can be reassembled from its parts such as many mechanical systems.

- These pieces work as one system to accomplish its function, but one key defect can stop the function.

- Also, complicated technical systems lack the ability to adapt. Such systems require redundant or backup components to mitigate failure.

(Ottino, 2004)
Complex Systems

- Situations where human participation or judgment is a key component, reductionist methods can misrepresent the problem domain.
- The human aspect introduces relationships between stakeholders as well as complexities not easily represented by hard systems methodologies.
- These kinds of problems require decision makers to account for both the technical factors and the needs of stakeholders to achieve sustainable results.

(Kirk, 1995)
Stakeholders’ **Worldview**

Frame the Nature of the Problem

It is important for stakeholders to have a Common worldview.

It is at Tier 1 in Figure 2, the level of governance, where agreements are made to bring together the resources needed to Adapt to rapid change.
Types of Errors

A Type III error is solving the wrong problem precisely in the most efficient way possible. This is often caused by having the wrong stakeholders involved or letting biases shape the problem definition.

A Type IV error is engaging in “muddled” thinking that is typically caused by a philosophical mismatch among stakeholders such that agreement is unlikely and movement to resolution is highly improbable.

(World Economic Forum 2011, Keating, 2008)
Systems Analysis

Figure 3
Influence of Social Component

Table 1 Nature of a Problem

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Traditional Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Type</td>
<td>Complicated</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Yes</td>
</tr>
<tr>
<td>Structure</td>
<td>Understood</td>
</tr>
<tr>
<td>Approach</td>
<td>Evident</td>
</tr>
<tr>
<td>Definition</td>
<td>Clear</td>
</tr>
<tr>
<td>Environment</td>
<td>More Static</td>
</tr>
<tr>
<td>Boundaries</td>
<td>Defined</td>
</tr>
</tbody>
</table>

Keating (2014)
Soft Systems Thinking

Table 1 Nature of a Problem

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Unique Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Type</td>
<td>Complex</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Not Easily</td>
</tr>
<tr>
<td>Structure</td>
<td>Emergent</td>
</tr>
<tr>
<td>Approach</td>
<td>Not Evident</td>
</tr>
<tr>
<td>Definition</td>
<td>Ambiguous</td>
</tr>
<tr>
<td>Environment</td>
<td>More Dynamic & Turbulent</td>
</tr>
<tr>
<td>Boundaries</td>
<td>Ambiguous</td>
</tr>
</tbody>
</table>

Keating (2014)

Satisficing Solution – an acceptable solution, while not optimal, it is good enough.
The Conundrum – How do you judge?

- Optimization most compatible with complicated engineering solutions.

- Satisficing solution is more compatible with complex engineering solutions.
Complexity Theory

Stacey’s Zones of Complexity

Stacey (2011)
Table 2 Constructed Scale

A: Can predict the potential hazard with a degree of confidence
B: Can only represent the potential hazards with planning scenarios.
C: Unable to represent the potential hazards in any scientifically based format.

1. There is an agreed upon solution(s), schedule and the financial capacity to implement resiliency.
2. There is an alignment of Federal, State and local jurisdictions in the form of a signed partnership agreement.
3. There is no regional or state representation with authority that can serve as sponsor with Federal government.
Systems Methodology

Ackoff’s Interactive Planning

• The interactive planning objective “is directed at creating the future.
• It is based on the belief that an organization’s future depends at least as much on what it does between now and then, as on what is done to it.
• Therefore, this type of planning consists of the design of a desirable present and the selection or invention of ways of approximating it as closely as possible. It creates its future by continuously closing the gap between where it is at any moment of time to where it would most like to be.

Approach has three underlying principles
• Participation – The stakeholders must lead the process and not leave it to outside experts.
• Continuity – Stakeholders should plan for emergence, i.e., unanticipated changes characteristic of complex problems only evident as the problems unfold.
• Holism – Stakeholders should plan across and down the hierarchical tiers to seek agreement in the worldview to avoid Type IV error.

(Ackoff, 2001)
A Framework for Systems Thinking

Table 3 Classification of System

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Simple system Apply hard system thinking</th>
<th>Complex system Apply soft systems thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacey's zones</td>
<td>Dark green, a hard systems approach.</td>
<td>Yellow or red, a soft systems approach.</td>
</tr>
<tr>
<td></td>
<td>Light green, a hybrid approach to address uncertainties.</td>
<td></td>
</tr>
<tr>
<td>Number of elements</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td>Few</td>
<td>Many</td>
</tr>
<tr>
<td>Predetermined attributes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interaction organization</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Laws governing behavior</td>
<td>Highly organized</td>
<td>Defined; deterministic or stochastic methods</td>
</tr>
<tr>
<td>System evolution over time</td>
<td>Not evolve</td>
<td>Evolves</td>
</tr>
<tr>
<td>Subsystem pursue own goals</td>
<td>No</td>
<td>Yes (purposeful)</td>
</tr>
<tr>
<td>System affected by behavioral influences</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Predominantly closed or open to the environment</td>
<td>Largely closed</td>
<td>Largely open</td>
</tr>
<tr>
<td>Predictable</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Method of analysis</td>
<td>Risk-resilience-informed decisions</td>
<td>Interactive planning</td>
</tr>
<tr>
<td>Type decision</td>
<td>Risk-resilience-informed decisions</td>
<td>Satisficing solutions</td>
</tr>
</tbody>
</table>

Figure 4

Figure 5 Systems Methodology Flow Chart

Green Zones

Yellow Zones

Red Zones

Mathematical Models

Risk Analysis

Interactive Planning

Risk-Resilience Informed Decisions

Satisficing Solutions

Resilient Alternatives

Chaos

Disorganized Retreat
Example 1 Socio-Technical Problem

Figure 2

Figure 4

Figure 5
Example 2 Technical Problem

1. Coastal Community

2a. Subsystems Infrastructure
 - 2b. Energy
 - 2b. Water
 - 2b. Waste
 - 2b. Transport
 - 2b. Landscape
 - 2b. Information

2c. Regional authority for collecting and treating wastewater from local jurisdictions

3. Jurisdictions - Local authorities for collecting local wastewater.

Figure 2

Figure 4

Figure 5

Green Zones
 - Figure 4
 - Table 2

Complicated,
 - Apply Hard
 - Systems
 - Thinking
 - Table 3

Mathematical
 - Models

Risk Analysis

Risk-Resilience
 - Informed
 - Decisions

Yellow Zones
 - Figure 4
 - Table 2

Complex,
 - Apply Soft
 - Systems
 - Thinking
 - Table 3

Scenarios

Interactive
 - Planning

Red Zone
 - Figure 4
 - Table 2

Disorganized
 - Retreat

Type Problem Situation

Chaos

Resilient Alternatives

Close to Agreement

Far from Agreement

Close to Certainty

Far from Certainty

Zone of Complexity

Zone of Chaos

Close to Agreement

Edge of Chaos

Zone of Chaos

A
B
C

Figure 2

Figure 4

Figure 5
On-Going Projects

• Recent storms has help the City of VA Beach accept a worldview.
• Boston shifted from brute resistance to some forms of retreat; making room for flooding.
• New York City Big U, is it still struggling with a worldview? (28 to 33 minutes in video).

Conclusions

• Simplified Process
• Disciplined way of structured thinking
• A graph to aid in determining hard or soft thinking
• A kind of thinking to plan capital improvement investments compatible with an uncertain future.
• A way to map the future to assess if moving toward resolution or toward chaos.

“For every complex problem there is an answer that is clear, simple and wrong.” H. L. Mencken

Q & A

Wizard of Id

We are never going to solve this equation. I got this.

That's not even close to the right answer.

True, but those graphics were pretty cool, yeah?

x = p

x = 27