

Number Guessing Game

Aaron Jones

4/17/2024

CYSE 250

 The field of web programming is broad and crucial for the development of
distributed applications. The goal of this project was to create a number guessing game
that uses a client-server architecture to facilitate real-time communication between
multiple clients and a central server. The main challenge was to design and implement a
system that could effectively manage simultaneous connections and gaming sessions
while providing an immersive user experience. The goal of the game is simple:
customers guess a number and the server gives hints until the correct number is
guessed. But the underlying network communication and concurrency management
presented complex problems to solve, such as handling multiple client connections,
synchronizing game state, and ensuring server responsiveness and scalability.

 This project was developed on a Dell computer that provided
the computing power and networking capabilities needed to host and test server-client
interactions. System specifications included an Intel Core i5 processor and 8GB of
RAM, which ensures that the server can handle multiple client connections without
significant performance degradation.

 The software was carefully selected to meet the requirements of the project. The
operating system was Windows 10 version 1909, which offered a stable and familiar
development environment. The project was written in Python 3.12.2, the latest version
at the time, which included improvements to make the development process easier,
especially in web programming. Visual Studio Code version 3.12 was chosen as the
IDE because of its extensive Python support, including debugging tools, and a user-
friendly interface that sped up the coding and testing phases.

 The software used to implement the project The implementation of the Number
Guessing game was based on the Python standard
library, especially the networking module and the concurrent chaining module. The
server script used socket programming to listen for incoming connections and created a
new thread for each client to manage multiple simultaneous game sessions. The client
script is designed to connect to the server, send guesses and receive feedback. Both
scripts included exception handling to handle potential network errors and ensure a
robust application.

 Results and Discussions the Number Guessing Game was successfully
implemented and met the project's functional requirements. The server was capable of
handling multiple clients concurrently, and users could interact with the game as
intended. During testing, it was observed that the server-maintained performance and
responsiveness even as the number of clients increased, validating the effectiveness of
the threading model used.

The project's success in creating a number-guessing game using a server-client model
demonstrated the practical application of web programming concepts in
Python. This provided valuable insight into the complexity of managing concurrent
connections and the importance of thorough testing of distributed systems. While the
current implementation has met the project's goals, future improvements may include a
graphical user interface for customers, improved gameplay features, and scalability
optimizations.

Appendix:

Server

Dictionary to store the secret number for each client

List to keep track of client threads

Generate a random number for the client to guess

Starting the number of attemps

Receive the clients guess

If the guess is correct, send a success message and break

Close the client socket
Log the clients guess to file

Create a TCP/IP socket

Set socket options to reuse the same adrs

Bind the socket to the address and port

Listen for incoming connections

Client

Main loop for the client to send guesses to server

Connect socket to server

Create a TCP/IP socket

Exit loop if the guess was correct

