
Popular Songs Database

Amira Muaket and Chris Sicle

Project’s Description
● We have created a database that will print out popular songs of

2023
● By doing so, users will have an option of choosing a month they

desire
● Once choosing the month it will print out the popular song of

that month, as well as, the artist and genre
● Users also have the option of choosing and gaining the full list

of popular songs where it will display the 12 months with the
song, artist and genre

Project’s Goal
● The goal of this project is to create an easy and effective way

users can gain information.
● We have created a user friendly server that allows the option

to gain insight about the top songs of each month while
providing details of each song

● We also provided the user to have a choice in the matter. They
can either choose a month for a quick look or obtain a full list
of top songs for all months

● This allows for flexibility and personal preference

The details about the hardware
● We used a MacBook Air: Retina, 13-inch 2020
● The Processor: 1.1 GHz Quad-Core Intel Core i5
● The Graphics: Intel Iris Plus Graphics 1536 MB
● The Memory: 16 GB 3733 MHz LPDDR4X

The details about the software
We used:

● IDLE Python 3.12 64
● Windows OS
● MacOS

Our Full Code

Server code:

Continued:

Client Code:

Break down of our code

Loops Used:
Server Code:

● while True:

 client, address = server.accept()
(Line 40 -41)

● while True:
(line 42-63)

Client Code:
● while True:

(Line 10-21)

Functions used:
Server Code:

● def get_song_info(month):
(Line 19)

● def save_song_list(file_name):
(Line 26)

Lists and Dictionaries used:
Server Code:

● TopSong = {
 "january": {...},
 "february": {...},
(Line 4-16)

Files used:
Server Code:

● def save_song_list(file_name):
 with open(file_name, 'w') as file:
(Line 26-27)

Strings used:
Server Code:

● def get_song_info(month):
 song_info = TopSong.get(month)
 if song_info:
 return f"In {month.capitalize()}, the Top Song
was:\nSong: {song_info['song']}\nArtist:
{song_info['artist']}\nGenre: {song_info['genre']}\n"
 else:
 return f"No song information available for the month
{month.capitalize()}\n"

(Line 19-24)

Strings Continued:
Client Code:
● user_input = input("Do you want to enter a month or save

the list to a file? (month/file/exit): ").strip().lower()
(Line 11)

Socket Programming Used:
Server Code:

● server = socket.socket()
server.bind(ADDRESS)
server.listen()
(Line 36-38)

● client, address = server.accept()
(Line 41)

Client Code:
● client = socket.socket()
● client.connect(ADDRESS)

(Line 7-8)

Server code:

Continued:

Client Code:

Conclusion
Overall our Popular Song Database has displayed the python
implementations that allow users to accesses any needed
information and data. By providing the user readability,
efficiency and simplicity. Our code has displayed socket
programming, loops, functions, files, strings, lists and
dictionaries.

