B) 4	states:
------	---------

State 1 – refrigerant leaves superheated at 2.7°C
State 2 – applying and isentropic efficiency of 80%, find state 2 on the pressure – enthalpy diagram,
and then calculate the actual enthalpy at state 2.
State 3 – the refrigerant leave super cold by 6.3°C.
State 4 – refrigerant, undergoes a throttling process, so it experiences a drop in pressure with no
change in enthalpy.
C) made already
D) E) retrigerant Mass Flow: $h_1 - h_2$ E) retrigerant Mass Flow: $h_1 - h_2$
evaporator.
$\dot{\mu} = \frac{2\pi \omega n}{100}$ F) first, find the work ber unity mass (W) and then use the mass flow rate to find the total power
required. 1KW equals 1.341 HP.
G) This is the heat rejection in the condenser, and it's the some of
the near absorbed in the evaporator and the work done by the compressor
7) Calculations
A) assume conditioned space at 75°F equals 24°C