CS 463/563: Cryptography for Cybersecurity Spring 2024

Homework #7

Points: 20

Question 1: [10 points] For the given three cases where **Alice** and **Bob** are trying to establish a shared secret key using **Diffie-Hellman** key exchange protocol, fill the values in the table. Show your work.

Parameter	Case 1	Case 2	Case 3	
p, a large prime	11	37	59	
α, an integer in {2,3,, p-2}	6	11	15	
p and α are published				
Alice chooses a in {2,3,, p-2}	4	13	17	
Bob chooses b in {2,3,, p-2}	5	9	20	
Alice computes $A = \alpha^a \mod p$, its public key				
Bob computes $B=\alpha^b \mod p$, its public key				
Alice and Bob exchange their public keys, A and B				
Alice computes the shared key, $K_{AB} = B^a \mod p$				
Bob computes the shared key, $K_{AB} = A^b \mod p$				
Verify that both the shared keys are identical				

Question 2: [10 points] For the given three cases where **Alice** is trying to send encrypted data to **Bob**, and **Bob** is trying to decrypt it, using **Elgamal encryption scheme**, fill the values in the table. Show your work.

Parameter	Case 1	Case 2	Case 3	
Bob chooses p, a large prime	11	31	59	
Bob chooses α , primitive element in Z_{p}^{*}	7	3	2	
Bob chooses $K_{pr} = d \in \{2, 3,, p-2\}$	6	9	3	
Bob computes $K_{pub} = \beta = \alpha^d \mod p$				
p, α , and β are sent to Alice				
Alice chooses i in {2,3,, p-2}	4	5	7	
Alice computes $K_E = \alpha^i \mod p$				
Alice computes $K_M = \beta^i \mod p$				
Alice's message to send is $x \in Z_p^*$	7	7	9	
Alice encrypts message x, $y = x^*K_M \mod p$				
Alice sends K _E and y to Bob				
Bob computes $K_M = K_E^d \mod p$				
Verify that Bob indeed computed the same K _M as what Alice did above				
Bob computes $K_M^{-1} \mod p$				
Bob computes $x = y^* K_M^{-1} \mod p$				
Verify that Bob indeed decrypted x correctly				

Note: \mathbf{Z}_{n}^{*} is a set of elements with multiplication operation, and integers less than that are relatively prime to **n**. For example, if **p** =19, $\mathbf{Z}_{19}^{*} = \{1, 2, 3, 4, \dots, 16, 17, 18\}$. Here, since **p** is a prime, \mathbf{Z}_{p}^{*} will also be $\{1, 2, 3, \dots, p-1\}$