CS 463/563: Cryptography for Cybersecurity Spring 2024 Homework # 12 Points: 20

Question 1. [Points 10] Shared session key establishment using a Key Distribution Center (KDC). Using the following table, illustrate how Alice can initiate a secure session with Bob with the help of KDC. Here, KEKs are the long-term key establishment keys used to transport the session keys across the network securely. Assume the encryption process to be as follows:

Block (LB || RB) is 8 bits; Encryption Key (LK||RK) is 8 bits; Ciphertext = LC|| RC where LC=LB \bigoplus RK; and RC=RB \bigoplus LK;

For example, if plaintext=A7 (Hexa) and Key = 6D; then LC=A \bigoplus D = 1010 \bigoplus 1101 = 0111 = 7 (Hexa); and RC = 7 \bigoplus 6 = 0111 \bigoplus 0110 = 0001 = 1 (Hexa); so Ciphertext = 71 (Hexa).

To decrypt, it does the reverse operation: Given ciphertext of C=LC||RC, it finds plaintext B=LB||RB, by finding LB=LC \bigoplus RK and RB = RC \bigoplus LK.

Alice	KDC	Bob
KEK: $k_A = A6$ (hexa)	KEK: $k_A = A6$ (hexa); $k_B = D8$ (hexa);	KEK: $k_B = D8$ (hexa);
Alice sends a message to KDC requesting a session key between Alice and Bob		
	Generate a random session key: $k_{ses} = 7B$ (hexa);	
	$\mathbf{y}_{\mathrm{A}} = \mathbf{e}_{\mathrm{kA}}(\mathbf{k}_{\mathrm{ses}}) = ??$	
	$\mathbf{y}_{\mathbf{B}} = \mathbf{e}_{\mathbf{k}\mathbf{B}}(\mathbf{k}_{\mathbf{ses}}) = ??$	
KDC sends $y_A = ??$ to Alice		
	KDC send $y_B = ??$ to Bob	
Decrypt y_A to derive k_{ses} using $k_A = ??$		Decrypt y _B to derive k _{ses} using k _B = ??
Message to send, m = 45 (Hexa)		
Encrypyt m using session key, $y = e_{kses}(m)$		
Alice sends y = ?? to Bob		
		Decrypt y using session key to get m = ??
		Verify that this is the message sent by Alice

Question 2. [Points 10] Man-in-the-middle attack when Alice and Bob employ Diffie-Hellman key exchange.

Alice	Carol (Intruder)	Bob	
$P = 17$ and $\alpha = 4$ are known to all			
Choose $\mathbf{k}_{\text{pri},A} = \mathbf{a} = 7$		Choose $\mathbf{k}_{pri,B} = \mathbf{b} = 8$	
Alice's public key: $\mathbf{k}_{pub,A} = \mathbf{A} = \boldsymbol{\alpha}^{a}$ mod $\mathbf{p} =$		Bob's public key: $\mathbf{k}_{pub,B} = \mathbf{B} = \mathbf{\alpha}^{\mathbf{b}}$ mod $\mathbf{p} =$	
Send A to Bob; intercepted by Carol			
	Send B to Alice; intercepted by Carol		
	Carol chooses c=6; computes A' = B' = $\alpha^c \mod p$		
	Carol sends A' to Bob as if it is A from Alice		
Carol sends B' to Alice as if it is from Bob			
Alice derives the shared secret key as K1 = B'a mod p	Carol derives $K1 = A^c \mod p$, $K2 = B^c \mod p$,	Bob derives the shared secret key as K2 = A'^b mod p	
Session 1 established with key K1: verify that Alice and Carol have derived the same key K1			
	Session 2 established with key K2; verify that Carol and Bob have derived the same key K2		

What to submit? Submit a pdf file with your answers via Canvas. Show your work