
Foundations of Cybersecurity
Fall 2024

Final Exam

Due Date: 12/03/2024 Points: 100

Student Registration # 035 Student Name: Christian Carrion

NOTE:
• Please carefully read the instructions after each question.
• Before executing CLI/Terminal/Bash command(s), change the prompt with your

First Name and registration Number (bashrhc PS1=“First_Name_Reg#”).

Q.1. How Access Control Matrix (ACM) represent the Access Control List (ACL) and

Capability List? Explain the answer using the following ACM. [15]

User/Group XYZ1.txt XYZ2.txt /usr/ABC

Owner (VMASC) rwx r-- rwx

Group (ODU) r-- rw- r-x

Others r-- r-- r-x

Access Control Matrix is a 2D table where the row represents users or users’ group.
The columns represent system files. Access Control is a list of attached to each
resource which specifies which users or groups have access to, and the type of access
they have. A capability list is a list associated with each group that shows the specific
resources they can access. Also, it shows the type of access they have. Each group
has a list of their own permission.

ACM to ACL:

XYZ1.txt

1. Owner(VMASC): Read, Write, Execute
2. Group(ODU): Read Only
3. Others: Read only

XYZ2.txt

1. Owner(VMASC): Read only
2. Group(ODU): Read and Write
3. Others: Read only

/usr/ABC

1. Owner(VMASC): Read, Write, Execute
2. Group(ODU): Read and Execute
3. Others: Read and Execute

ACM as Capability List:

VMASC user:

1. XYZ1.txt: Read, Write, Execute
2. WXY2.txt: Read only
3. /usr/ABC: Read, write, Execute

Group (ODU):

1. XYZ1.txt: Read only
2. XYZ2.txt: Read and Write
3. /usr/ABC: Read and Execute

Others:

1. XYZ1.txt: Read only
2. XYZ2.txt: Read only
3. /usr/ABC: Read and Execute

Q.2. What is the privilege program and what are the vulnerabilities that it poses during the
execution? Create a file “xyz.txt” using the following command and change its set-
UID bit to HIGH. Show the “xyz.txt” file attributes using “ls -l” command before
and after the set-UID enabling. [15]

A privilege program is a program or process that runs with elevated privileges. They have

more capabilities than regular privileged programs. Privilege programs can raise
potential vulnerabilities such:

1. Race Conditions
2. Buffer Overflows
3. Privilege Escalation

[Include Screenshots of the Terminal / CLI]

 echo “ABBCCDDD” > xyz.txt

Q.3. What type of vulnerabilities are presented by the following code? [10]

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int main() {

 char* v[2];

 int fd = open("/etc/zzz", O_RDWR | O_APPEND);

 if (fd== -1) {

 printf("Cannot Open /etc/zzz \n");

 exit(0);

 }

 setuid(getuid());

 v[0]= "/bin/sh"; v[1] = 0;

 execve(v[0],v,0);

 return 0;

}

There are two main vulnerabilities that I see in this code.

1. Insecure file Access, which is potential for race condition:
- This code opens the file /etc/zzz for read and write (which is 0_RDWR) with the
flag 0_APPEND. The vulnerability is that the file path /etc/zzz is accessed
without validation or security measures. This is where race conditions can take
place. If an attacker could manipulate the contents of the file of /etc/zzz
between the time it’s checked and time it is opened, it can give the attacker an
opportunity to cause abnormal behavior. This is known as Time-of-check to
time-of-use vulernability.

2. Command Injection

- The line of code execve(v[0], v,0);executes the /bin/shell. This has the potential to
introduce command injections. For example, of an attacker could manipulate the
content of v[0] , they could potentially force the program to execute arbitrary shell
commands. This means this could lead to remote code execution.

Q.4. What is the format string vulnerability and how it can be exploited? Explain your answer
with example code and the screenshot of the code execution output in the terminal?[15]

A format string vulnerability occurs when an attacker can manipulate format string
used in function like printf(). This this case, the coding in Q.3 has the function
printf(). The attacks can control the format specifiers like %s or %d, which can
lead to code execution, stack corruption or memory leaks.

After I executed the code file, it will tell me I can not open /etc/zzz. However, for some
unknown reasons, when I execute the file nothing happens.

Q.5. What vulnerabilities the following code represents and what will be its output when it
is passed with the command line arguments of "Cyber1 %s%s%s%s%s%s" and
"Cyber2 %p %p %p %p %p %p" ? [15]
[Include Screenshots of the Terminal Window / CLI]

#include <stdio.h>

#include <stdarg.h>

void main(int argc, char **argv)

{

 printf("%s\n", argv[1]);

 printf(argv[1]);

 printf("\n");

}

Vulnerabilities found in code are buffer Overflow and Stack

Corruption.

Q.6. What vulnerabilities the following code represents and what will be its output when it

is passed with the command line arguments of "Cyber3 %p %p %p %p %p %p" and
"Cyber4 %x %x %x %x %x %x" ? [15]

[Include Screenshots of the Terminal Window / CLI]

#include <stdio.h>

void fmtstr()

{

 char input[100];

 int var = 0x12123434;

 printf("Target address = %x\n",(unsigned) &var);

 printf("Data at Target address = 0x%x\n", var);

 printf("Enter String : ");

 fgets(input, sizeof(input)-1, stdin);

 printf(input);

}

void main() {

 fmtstr();

}

The vulnerabilities that can be found in this code are Format string vulnerability,
memory corruption, and lack of proper input validation.

Q.7. Consider a scenario where two processes, A and B, need to update a shared file in a
Unix system. Process A writes to the file first, followed by Process B. Describe a
potential race condition that could occur in this scenario. Explain how you would use
Unix system calls to prevent this race condition, ensuring that the file updates are
performed correctly and without interference. [15]

In this scenario, if both A and B process simultaneously attempted to access or modify

the file, this could lead to a potential race condition. Here is an example in how a
race condition could occur. Lets say that process A started writing data to the file.
In this case it is trying to write “Hello”. At the same time Process B also starts to
write data to the file. In this case let’s say that process B is writing “world” before
Process A completed its operation. If this was the case the final contents of the file
could become corrupt. This is because A and B processes overlap overtime. With

no proper mechanisms, there is a chance A process and B process and interfere
with one another.

Have preventive measure that could solve this issue is by using the flock() system call.

This system call is used to acquire a lock on a file. There are types of locks:
1. Shared lock (LOCK_SH)
2. Exclusive Lock (LOCK_EH)

An example of how flock() works is LOCK_EX would lock the file exclusively. This means
that no other file can read or write until the lock as been released. If process A has
completed writing data into the file, It would then call flock system call to release the
lock. Than Process B can acquire the lock, and could then proceed to write into the file.

