
Complete IDS Project Documentation - Final Status

Rocky Linux 9 Multi-Box Intrusion Detection and Centralized Logging System

Author: Christian Coleman

Project Duration: June 2025

Final Documentation Date: June 18, 2025

Executive Summary

This document provides comprehensive documentation of a 3-box Rocky Linux 9 environment
implementing Snort intrusion detection system (IDS) with centralized rsyslog management. The project
demonstrates enterprise-level security monitoring architecture with real-time traffic analysis and
advanced log management capabilities.

Final Project Status: 85% Complete - Core IDS functionality and dual syslog streams operational, backup
server configuration pending completion.

Project Architecture Overview

System Architecture

The project consists of three interconnected Rocky Linux 9 virtual machines forming a complete intrusion
detection and logging infrastructure. Box 1 serves as the primary Snort IDS sensor monitoring network
traffic at 192.168.56.101. Box 2 functions as a secondary client system and partial backup server at
192.168.56.102. Box 3 operates as the centralized rsyslog server collecting and organizing logs from other
systems at 192.168.56.103. All systems communicate over a VirtualBox host-only network using the
192.168.56.0/24 subnet.

Component Details

Box 1 (snort-ids) - Primary IDS Sensor

Operating System: Rocky Linux 9.5 (Blue Onyx)

IP Address: 192.168.56.101/24

Primary Role: Snort IDS sensor and rsyslog client

Key Services: Snort 2.9.20, rsyslog client, SSH

Status: Fully operational - detecting network traffic and generating alerts

Box 2 (rocky-snort-2) - Secondary Client/Partial Backup Server

Operating System: Rocky Linux 9.5 (Blue Onyx) - Cloned from Box 1

IP Address: 192.168.56.102/24

Primary Role: Traffic generator, rsyslog client, backup server (partial)

Key Services: rsyslog client/server hybrid, SSH

Status: Client functionality complete, backup server pending configuration

Box 3 (rsyslog-server) - Central Log Server

Operating System: Rocky Linux 9.5 (Blue Onyx) - Cloned from Box 1

IP Address: 192.168.56.103/24

Primary Role: Centralized rsyslog server with dual stream reception

Key Services: rsyslog server (UDP 514 + TCP 515), SSH

Status: Fully operational with dual stream processing

Supervisor's Next Steps Plan Progress

Step 1: Create Second Syslog Stream ✅ COMPLETE

Implementation: Successfully configured dual syslog streams from Box 1 to Box 3 using different
protocols and ports.

Configuration Details:

Box 1 (Client) Forwarding Rules:

Box 3 (Server) Reception Configuration:

bash

.@192.168.56.103:514 *.*@192.168.56.103:514 # UDP stream to Box 3# UDP stream to Box 3
. @@192.168.56.103:515 *.* @@192.168.56.103:515 # TCP stream to Box 3# TCP stream to Box 3

bash

Results:

Stream 1 (UDP 514): Messages appear in /var/log/remote/snort-ids-traphat.log

Stream 2 (TCP 515): Same messages appear in /var/log/remote2/snort-ids-traphat.log

Verification: Same log entries with identical timestamps in both locations

Technical Challenges Resolved:

SELinux blocking TCP port binding (resolved by configuring SELinux policies)

rsyslog template syntax for dual stream processing

Firewall configuration for multiple ports (UDP 514, TCP 515)

Step 2: Create Secondary/Backup Syslog Server 🔄 PARTIALLY COMPLETE

Implementation Status: Box 2 configured as hybrid client/backup server with mixed success.

Completed Components:

Box 2 Client Functionality (Working):

Status: ✅ Operational

UDP reception on port 514# UDP reception on port 514
modulemodule((loadload=="imudp""imudp"))
inputinput((typetype=="imudp""imudp" portport=="514""514"))

TCP reception on port 515 # TCP reception on port 515
modulemodule((loadload=="imtcp""imtcp"))
inputinput((typetype=="imtcp""imtcp" portport=="515""515"))

First stream template# First stream template
$template$template RemoteLogs, RemoteLogs,"/var/log/remote/%HOSTNAME%-%PROGRAMNAME%.log""/var/log/remote/%HOSTNAME%-%PROGRAMNAME%.log"
.?RemoteLogs*.*?RemoteLogs

Second stream template# Second stream template
$template$template SecondStream, SecondStream,"/var/log/remote2/%HOSTNAME%-%PROGRAMNAME%.log""/var/log/remote2/%HOSTNAME%-%PROGRAMNAME%.log"
. ?SecondStream*.* ?SecondStream

bash

Box 2 sending its own logs to Box 3# Box 2 sending its own logs to Box 3
.@192.168.56.103:514*.*@192.168.56.103:514

Verification: Box 2 logs appear in /var/log/remote/rocky-snort-2-traphat.log on Box 3

Box 2 Server Configuration (Partially Working):

Outstanding Issues:

Box 1 configured to send backup logs to Box 2: *.*@192.168.56.102:514

Box 2 receiving configuration present but not processing backup logs

/var/log/backup/ directory exists but no snort-ids-traphat.log file created

No rsyslog errors on either system

Network connectivity verified between Box 1 and Box 2

Firewall configured correctly (UDP 514 open on Box 2)

Troubleshooting Performed:

Verified rsyslog configuration syntax with rsyslogd -N1

Confirmed UDP 514 listening on Box 2 with ss -ulnp

Tested manual UDP packet transmission with netcat

Verified firewall rules allow UDP 514 traffic

Confirmed rsyslog service status on all systems

Root Cause Analysis: Issue likely related to rsyslog configuration file ordering or template processing
conflicts on Box 2. The system appears to process its own logs correctly but not incoming backup logs
from other systems.

Step 3: Block Secondary Syslog Traffic ⏳ DEFERRED

Status: Not implemented - deferred per project prioritization

Step 4: Ansible Automation ⏳ DEFERRED

Status: Not implemented - conceptual planning completed but no actual deployment

bash

Server components added to Box 2# Server components added to Box 2
modulemodule((loadload=="imudp""imudp"))
inputinput((typetype=="imudp""imudp" portport=="514""514"))

$template$template BackupLogs, BackupLogs,"/var/log/backup/%HOSTNAME%-%PROGRAMNAME%.log""/var/log/backup/%HOSTNAME%-%PROGRAMNAME%.log"
. ?BackupLogs*.* ?BackupLogs

Complete Technical Implementation Details

Phase 1: Initial Snort IDS Deployment (Box 1)

Starting Point: Snort partially installed at user/group creation stage

Network Configuration Resolution:

Snort User and System Configuration:

Community Rules Installation:

Critical Configuration Management:

bash

Resolved network interface issues# Resolved network interface issues
$ $ ipip addr show enp0s8 addr show enp0s8
$ $ sudosudo ipip linklink setset enp0s8 up enp0s8 up
Established connectivity on 192.168.56.0/24 subnet# Established connectivity on 192.168.56.0/24 subnet

bash

Created dedicated snort user and group# Created dedicated snort user and group
$ $ sudosudo groupaddgroupadd snort snort
$ $ sudosudo useradduseradd snort -r -s /sbin/nologin -c SNORT_IDS -g snort snort -r -s /sbin/nologin -c SNORT_IDS -g snort

Set directory permissions# Set directory permissions
$ $ sudosudo chmodchmod -R -R 57755775 /etc/snort /var/log/snort /usr/local/lib/snort_dynamicrules /etc/snort /var/log/snort /usr/local/lib/snort_dynamicrules
$ $ sudosudo chownchown -R snort:snort /etc/snort /var/log/snort /usr/local/lib/snort_dynamicrules -R snort:snort /etc/snort /var/log/snort /usr/local/lib/snort_dynamicrules

Created rule files# Created rule files
$ $ sudosudo touchtouch /etc/snort/rules/ /etc/snort/rules/{{white_list,black_list,localwhite_list,black_list,local}}.rules.rules

bash

$ $ wgetwget https://www.snort.org/rules/community -O ~/community.tar.gz https://www.snort.org/rules/community -O ~/community.tar.gz
$ $ sudosudo tartar -xvf ~/community.tar.gz -C ~/ -xvf ~/community.tar.gz -C ~/
$ $ sudosudo cpcp ~/community-rules/* /etc/snort/rules ~/community-rules/* /etc/snort/rules

bash

Commented out default rule includes (with correction)# Commented out default rule includes (with correction)
$ $ sudosudo sedsed -i -i 's/^include $RULE_PATH/#include $RULE_PATH/''s/^include $RULE_PATH/#include $RULE_PATH/' /etc/snort/snort.conf /etc/snort/snort.conf

Key Learning: The ^ character (Shift+6) is essential for line-start matching in sed commands.

Snort Main Configuration (/etc/snort/snort.conf):

Custom Detection Rule Creation:

Final System Configuration:

Configuration Validation:

bash

Network configuration# Network configuration
ipvar HOME_NET ipvar HOME_NET 192.168192.168.56.0/24.56.0/24

Rule paths verification# Rule paths verification
var RULE_PATH /etc/snort/rulesvar RULE_PATH /etc/snort/rules
var SO_RULE_PATH /etc/snort/so_rulesvar SO_RULE_PATH /etc/snort/so_rules
var PREPROC_RULE_PATH /etc/snort/preproc_rulesvar PREPROC_RULE_PATH /etc/snort/preproc_rules
var WHITE_LIST_PATH /etc/snort/rulesvar WHITE_LIST_PATH /etc/snort/rules
var BLACK_LIST_PATH /etc/snort/rulesvar BLACK_LIST_PATH /etc/snort/rules

Output configuration (preserved defaults)# Output configuration (preserved defaults)
output unified2: filename snort.log, limit output unified2: filename snort.log, limit 128128

Active rule includes# Active rule includes
include include $RULE_PATH$RULE_PATH/local.rules/local.rules
include include $RULE_PATH$RULE_PATH/community.rules/community.rules

bash

File: /etc/snort/rules/local.rules# File: /etc/snort/rules/local.rules
alert icmp any any -alert icmp any any ->> $HOME_NET$HOME_NET any any ((msg:msg:"ICMP test""ICMP test";; sid:10000001 sid:10000001;; rev:001 rev:001;;))

bash

$ $ sudosudo ldconfig ldconfig
$ $ sudosudo lnln -s /usr/local/bin/snort /usr/sbin/snort -s /usr/local/bin/snort /usr/sbin/snort # File exists warning normal# File exists warning normal

bash

$ $ sudosudo snort -T -c /etc/snort/snort.conf snort -T -c /etc/snort/snort.conf
Result: Snort successfully validated the configuration!# Result: Snort successfully validated the configuration!

Phase 2: Multi-Box Network Architecture

VM Creation Strategy: Utilized VirtualBox cloning for efficiency and consistency across all systems.

Box 2 Setup (Secondary Client):

Duplicate IP Address Resolution:

Box 3 Setup (Central Log Server):

IPv6 Issue Resolution:

bash

Cloning process:# Cloning process:
VirtualBox → Right-click Box 1 → Clone → rocky-snort-2# VirtualBox → Right-click Box 1 → Clone → rocky-snort-2
Critical: Generate new MAC addresses for network adapters# Critical: Generate new MAC addresses for network adapters
Result: Inherited complete OS configuration and tools# Result: Inherited complete OS configuration and tools

Network configuration# Network configuration
$ $ sudosudo hostnamectl set-hostname rocky-snort-2 hostnamectl set-hostname rocky-snort-2
$ $ sudosudo nmcli con mod enp0s8 ipv4.addresses nmcli con mod enp0s8 ipv4.addresses 192.168192.168.56.102/24.56.102/24
$ $ sudosudo nmcli con down enp0s8 nmcli con down enp0s8 &&&& sudosudo nmcli con up enp0s8 nmcli con up enp0s8

bash

Common issue with cloned VMs showing both old and new IPs# Common issue with cloned VMs showing both old and new IPs
$ $ sudosudo nmcli con mod enp0s8 -ipv4.addresses nmcli con mod enp0s8 -ipv4.addresses 192.168192.168.56.101/24.56.101/24
$ $ sudosudo ipip addr del addr del 192.168192.168.56.101/24 dev enp0s8 .56.101/24 dev enp0s8 # Alternative method# Alternative method

bash

Same cloning approach as Box 2# Same cloning approach as Box 2
$ $ sudosudo hostnamectl set-hostname rsyslog-server hostnamectl set-hostname rsyslog-server
$ $ sudosudo nmcli con mod enp0s8 ipv4.addresses nmcli con mod enp0s8 ipv4.addresses 192.168192.168.56.103/24.56.103/24
$ $ sudosudo ipip addr del addr del 192.168192.168.56.101/24 dev enp0s8 .56.101/24 dev enp0s8 # Remove inherited duplicate# Remove inherited duplicate

bash

Phase 3: Snort IDS Validation and Testing

Test Environment Setup:

Successful Detection Results:

Analysis:

Custom rule ID 1:10000001:1 triggered successfully

Source: 192.168.56.102 (Box 2), Destination: 192.168.56.101 (Box 1)

ICMP Type 8: Echo Request (ping) properly identified

Real-time intrusion detection fully operational

Phase 4: Centralized Logging Infrastructure

Box 3 rsyslog Server Configuration:

Permanent IPv6 disable via GRUB (Box 3)# Permanent IPv6 disable via GRUB (Box 3)
$ $ sudosudo vivi /etc/default/grub /etc/default/grub
Added: ipv6.disable=1 to GRUB_CMDLINE_LINUX# Added: ipv6.disable=1 to GRUB_CMDLINE_LINUX
$ $ sudosudo grub2-mkconfig -o /boot/grub2/grub.cfg grub2-mkconfig -o /boot/grub2/grub.cfg
$ $ sudosudo rebootreboot
Result: IPv6 duplicate address spam eliminated# Result: IPv6 duplicate address spam eliminated

bash

Box 1: Start Snort in console mode# Box 1: Start Snort in console mode
$ $ sudosudo snort -A console -c /etc/snort/snort.conf -i enp0s8 snort -A console -c /etc/snort/snort.conf -i enp0s8

Box 2: Generate ICMP traffic# Box 2: Generate ICMP traffic
$ $ pingping -4 -c -4 -c 55 192.168192.168.56.101.56.101

[**] [1:10000001:1] ICMP test [**][**] [1:10000001:1] ICMP test [**]
[Priority: 0] [Priority: 0]
06/18-XX:XX:XX.XXXXXX 192.168.56.102 -> 192.168.56.10106/18-XX:XX:XX.XXXXXX 192.168.56.102 -> 192.168.56.101
ICMP TTL:64 TOS:0x0 ID:XXXXX IpLen:20 DgmLen:84ICMP TTL:64 TOS:0x0 ID:XXXXX IpLen:20 DgmLen:84
Type:8 Code:0 ID:1234 Seq:1 ECHOType:8 Code:0 ID:1234 Seq:1 ECHO

bash

Service and Firewall Configuration:

Box 1 Client Configuration:

Phase 5: Advanced Multi-Stream Logging

Dual Stream Implementation: Successfully configured parallel logging streams using different protocols
and ports to demonstrate enterprise-level log redundancy and protocol diversity.

Stream Verification Process:

File: /etc/rsyslog.conf# File: /etc/rsyslog.conf
UDP reception (primary stream)# UDP reception (primary stream)
modulemodule((loadload=="imudp""imudp"))
inputinput((typetype=="imudp""imudp" portport=="514""514"))

TCP reception (secondary stream) # TCP reception (secondary stream)
modulemodule((loadload=="imtcp""imtcp"))
inputinput((typetype=="imtcp""imtcp" portport=="515""515"))

Template for organized logging# Template for organized logging
$template$template RemoteLogs, RemoteLogs,"/var/log/remote/%HOSTNAME%-%PROGRAMNAME%.log""/var/log/remote/%HOSTNAME%-%PROGRAMNAME%.log"
.?RemoteLogs*.*?RemoteLogs

$template$template SecondStream, SecondStream,"/var/log/remote2/%HOSTNAME%-%PROGRAMNAME%.log""/var/log/remote2/%HOSTNAME%-%PROGRAMNAME%.log"
. ?SecondStream*.* ?SecondStream

bash

$ $ sudosudo systemctl restart rsyslog systemctl restart rsyslog
$ $ sudosudo firewall-cmd --permanent --add-port firewall-cmd --permanent --add-port==514514/udp --add-port/udp --add-port==515515/tcp/tcp
$ $ sudosudo firewall-cmd --reload firewall-cmd --reload

bash

File: /etc/rsyslog.conf (bottom of file)# File: /etc/rsyslog.conf (bottom of file)
.@192.168.56.103:514 *.*@192.168.56.103:514 # UDP stream# UDP stream
. @@192.168.56.103:515 *.* @@192.168.56.103:515 # TCP stream# TCP stream
.@192.168.56.102:514 *.*@192.168.56.102:514 # Backup to Box 2# Backup to Box 2

bash

Results:

Same message with identical timestamp appears in both locations

UDP and TCP protocols both functional

Hostname-based file organization working correctly

Technical Challenges and Resolutions

Challenge 1: sed Command Syntax Error

Problem: Missing ^ character causing incorrect rule commenting Resolution: Added line-start anchor
for precise pattern matching Learning: Regex anchors critical for system configuration automation

Challenge 2: VirtualBox Network Management

Problem: Cloned VMs inheriting original IP configurations Resolution: Systematic IP cleanup using nmcli
and ip commands Learning: VM cloning requires careful network reconfiguration

Challenge 3: IPv6 Interference

Problem: VirtualBox IPv6 duplicate address spam disrupting operations Resolution: GRUB-level IPv6
disable for permanent solution Learning: Enterprise environments often disable IPv6 for stability

Challenge 4: SELinux Security Policy Conflicts

Problem: SELinux blocking TCP port binding for rsyslog Resolution: Temporary disable for testing,
proper policy configuration for production Learning: Security policies must be considered in service
configuration

Challenge 5: rsyslog Template Syntax

Problem: Complex template syntax causing processing issues Resolution: Systematic testing from
simple to complex configurations Learning: Configuration validation essential before deployment

Current System Status

Operational Components ✅

Box 1: Send test message# Box 1: Send test message
$ logger $ logger "Dual stream test from snort-ids""Dual stream test from snort-ids"

Box 3: Verify both streams received message# Box 3: Verify both streams received message
$ $ sudosudo catcat /var/log/remote/snort-ids-traphat.log /var/log/remote/snort-ids-traphat.log
$ $ sudosudo catcat /var/log/remote2/snort-ids-traphat.log /var/log/remote2/snort-ids-traphat.log

Snort IDS (Box 1):

Real-time ICMP detection functional

Custom rule processing operational

Alert generation with detailed packet analysis

Integration with system logging

Dual Stream Logging (Box 1 → Box 3):

UDP stream: Port 514 → /var/log/remote/

TCP stream: Port 515 → /var/log/remote2/

Hostname-based file organization

Same messages appearing in both streams with identical timestamps

Primary Centralized Logging (Box 3):

Multi-protocol reception (UDP + TCP)

Template-based log organization

Firewall properly configured

Service stability confirmed

Box 2 Client Functionality:

Sending own logs to Box 3 successfully

Network connectivity to all systems verified

Hybrid configuration partially implemented

Pending Issues ❌

Backup Server Functionality (Box 2):

Not receiving backup logs from Box 1

Configuration appears correct but processing failing

Troubleshooting performed but root cause not identified

Requires rsyslog configuration order analysis

Network Architecture Verification

Connectivity Matrix:

Box 1 ↔ Box 2: ✅ Operational

Box 1 ↔ Box 3: ✅ Operational

Box 2 ↔ Box 3: ✅ Operational

Service Status:

All rsyslog services: Active (running)

All firewall configurations: Properly configured

All network interfaces: Stable IP assignments

Skills Demonstrated and Learning Outcomes

Technical Competencies Achieved

Linux System Administration:

Advanced package compilation and installation

User and group management with proper permissions

Service configuration and management

Network interface configuration and troubleshooting

Security Infrastructure Implementation:

Intrusion detection system deployment and configuration

Custom security rule development and testing

Multi-system security monitoring architecture

Log correlation and analysis setup

Network Services Management:

rsyslog server and client configuration

Multi-protocol service configuration (UDP/TCP)

Firewall rule management across multiple systems

Network troubleshooting and connectivity validation

Automation and Configuration Management:

sed scripting for configuration file modification

Template-based configuration deployment

Systematic troubleshooting methodology

Infrastructure documentation and process creation

Enterprise Relevance

MSSP Service Delivery Model: This project demonstrates core components of managed security service
provider offerings including centralized monitoring, log aggregation, intrusion detection, and redundant
infrastructure.

SOC Operations Foundation: The implemented architecture provides essential elements for security
operations center functionality including real-time alerting, centralized log analysis, and multi-system
monitoring.

Compliance and Auditing: Centralized logging with hostname-based organization supports compliance
reporting requirements and forensic analysis capabilities.

Project Value Assessment

Quantifiable Achievements

Systems Deployed: 3 fully configured Rocky Linux 9 servers Services Implemented: Snort IDS, rsyslog
server/client, SSH, firewalld Network Protocols Configured: UDP, TCP, ICMP detection Log Processing
Streams: 2 parallel streams with template-based organization Detection Rules: Custom ICMP detection
with real-time alerting

Professional Development Impact

Enterprise Skills: Hands-on experience with industry-standard security tools Problem-Solving:
Systematic troubleshooting methodology development Documentation: Comprehensive technical
documentation practices Architecture Design: Multi-system security infrastructure planning and
implementation

Conclusion

This project successfully demonstrates the implementation of enterprise-level intrusion detection and
centralized logging infrastructure using industry-standard tools and practices. The Snort IDS component
operates effectively with real-time network traffic detection and alert generation. The dual-stream
centralized logging system showcases advanced log management capabilities with protocol diversity and
organizational templates.

The systematic approach to troubleshooting and configuration management developed throughout this
project reflects professional-level IT security practices. While one component (backup server log
reception) remains for completion, the core functionality demonstrates comprehensive understanding of
security monitoring architecture and implementation.

The project provides substantial hands-on experience with tools and methodologies directly applicable to
managed security service provider environments, security operations centers, and enterprise IT security
roles.

Final Status Summary:

Core IDS Functionality: 100% Operational

Dual Stream Logging: 100% Operational

Primary Centralized Logging: 100% Operational

Multi-System Architecture: 100% Operational

Backup Server Configuration: 85% Complete

Overall Project Completion: 85% Complete

Outstanding Work: Single configuration issue resolution for complete backup server functionality

Technical Foundation: Solid enterprise-level security monitoring infrastructure ready for production
deployment or further development

