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Abstract

The world of artificial intelligence is expanding rapidly with the emergence of technologies like

Llama 2, Chat-GPT 4, and Stable Diffusion XL, with many more expected by the end of this

year. What do they all have in common? Well, they all rely on neural networks to extract patterns

from data and produce results based on given prompts. However, the emphasis on security is

often an afterthought, only considered when something goes wrong or when these models are

used for malicious purposes. One innovative approach to address this problem is through

adversarial machine learning. Adversarial machine learning involves training the model using

carefully crafted inputs to help it adapt to perturbations—small and often intentional disturbances

or changes introduced into the model. This allows the model to continue making reliable

predictions without generating false results. Without adversarial machine learning, attackers can

reduce the reliability of the model and manipulate its output predictions. In this paper, we will

explore various neural network architectures, examine how perturbations affect neural networks,

discuss the implementation of adversarial machine learning, and present our findings.
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Introduction

MobileNetV3, Transformers, DenseNet, Convolutional Neural Networks, Recurrent

Neural Networks, and WideResNet represent some of the most well-known and widely used

neural network architectures. Now, let's delve into each of them and explore their notable

achievements.

MobileNetV3 is designed specifically for mobile and embedded devices, and its notable

achievement lies in its remarkable efficiency. This architecture achieves this efficiency through a

two-step process involving depthwise separable convolutions. The first step, known as depthwise

convolution, applies separate filters for each input channel, thereby reducing the number of

computations. The second step involves pointwise convolution, where a 1x1 convolution

combines channel-wise information to capture relationships between channels. This design

choice significantly reduces computational and memory requirements, making MobileNetV3

ideal for resource-constrained devices such as smartphones (Howard et al., 2019). Importantly, it

strikes a delicate balance between accuracy and efficiency.

Transformers, primarily used in natural language processing tasks, have made significant

strides in various language-related applications. Their architectural structure consists of an

encoder-decoder framework, enriched by a mechanism called "self-attention." Self-attention

allows the model to weigh the importance of different parts of the input text, similar to how

humans pay attention to certain words based on context (Vaswani et al., 2017). Transformers

often incorporate multiple "attention heads," working in parallel, to excel at capturing complex

relationships within language. To account for the absence of inherent sequence order in



WIDE RESNET ROBUSTNESS WITH ADVERSARIAL MACHINE LEARNING 4

Transformers, they employ positional encoding, which provides crucial information about word

positions within sentences.

DenseNet, short for Densely Connected Convolutional Networks, distinguishes itself

through its dense connections between layers. This architecture organizes the network into dense

blocks, wherein each layer not only feeds into the subsequent layer but also shares connections

with all subsequent layers (Huang et al., 2017). This approach encourages feature reuse and

facilitates gradient flow. Additionally, DenseNet often integrates bottleneck layers, represented

by 1x1 convolutions, to control computational costs while preserving rich feature interactions.

Convolutional Neural Networks (CNNs) are tailored for visual data like images,

structured in layers to extract meaningful features (Krizhevsky et al., 2012). CNNs employ

convolution layers to detect features such as edges, shapes, and textures in input data. To

enhance efficiency and invariance to small translations in the input, pooling layers are employed,

reducing spatial dimensions in feature maps. Lastly, fully connected layers, typically used in the

final stages of CNNs, enable predictions based on the extracted features, particularly in image

classification tasks.

Recurrent Neural Networks (RNNs), employed for sequential data such as time series,

text, or speech, are characterized by their hidden state. This hidden state carries information from

the previous time step to the current one, allowing RNNs to capture dependencies in sequences.

Nevertheless, RNNs can suffer from vanishing gradient issues when dealing with lengthy

sequences, prompting the development of more advanced variants like LSTM and GRU, which

mitigate this problem (Hochreiter & Schmidhuber, 1997).



WIDE RESNET ROBUSTNESS WITH ADVERSARIAL MACHINE LEARNING 5

WideResNet, a variation of ResNet known for its depth, focuses on widening the

architecture rather than making it deeper. WideResNet achieves this by employing wider residual

blocks with more channels than standard ResNets, enabling it to capture more diverse features

from input data. This architectural choice effectively reduces overfitting, a common concern in

very deep networks, by distributing the learning process across a broader range of features.

After evaluating various neural network architectures, we have selected WideResNet as

the primary focus of our paper for several compelling reasons. WideResNet incorporates

techniques such as dropout and weight decay, is known for its ability to enhance model

generalization, and reduces susceptibility to overfitting. This proves particularly advantageous

when dealing with limited training data. Additionally, WideResNet has exhibited greater

resilience to certain types of noise and adversarial attacks when compared to other architectures.

This robustness is particularly valuable in applications where input data may be noisy or

corrupted. Furthermore, WideResNet can achieve competitive performance while demanding

fewer computational resources than some alternative architectures. This is especially crucial in

resource-constrained environments or on edge devices. These factors collectively make

WideResNet an intriguing subject for adversarial machine learning research.

Keywords

Widths:

The number of nodes/neurons or filters in each layer of a neural network. Wider layers increase

the representational capacity and overall model complexity within each layer. Using more

nodes/filters enables learning more complex features in each layer, but also increases

computational cost and memory requirements.
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Depths:

The number of layers in the overall neural network architecture. Deeper networks allow

representing more hierarchical compositions of features, enabling learning of highly abstract

concepts. However, deeper networks also increase the total number of trainable parameters,

making overfitting during training more likely. The greater depth allows learning more complex

feature combinations, but also increases training difficulty.

Skip connection:

It enables the gradient flow during training by creating a direct shortcut or path between layers in

a neural network. Instead of passing the output of one layer directly to the next layer in a

sequential manner, a skip connection creates a shortcut that directly connects an earlier layer to a

later layer. This means that the output of a layer can bypass one or more intermediate layers and

be added to the output of a later layer.

Filters:

Filters refer to the number of channels or feature maps used in the convolutional layers, and

adjusting this number through the "widen factor" hyperparameter allows you to control the width

and capacity of the network, which can impact its ability to capture complex features and

patterns in data.

Natural accuracy:

The accuracy on clean, unperturbed examples from the original test set. This measures the

model's standard performance on examples it was intended for.

Robust accuracy:
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The accuracy on adversarially perturbed examples. This measures the model's robustness to

adversarial attacks.

Epsilon:

The maximum L-norm distance of the adversarial perturbation from the original example. For

example, epsilon of 0.01 for L-inf norm limits perturbations to -0.01 to 0.01 for each pixel in an

image.

Alpha:

The step size used to update the adversarial perturbation in each step of an attack like PGD.

Larger alpha allows finding stronger attacks faster.

PGD steps:

The number of gradient descent steps to take in the PGD adversarial attack algorithm. More steps

find stronger adversarials but are slower to compute.

Epochs:

The number of complete passes through the training set during the training. More epochs

improve natural and robust accuracy but take longer to train.

Explaining the WideResNet architecture

The WideResNet architecture, proposed in 2016 by Sergey Zagoruyko and Nikos

Komodakis, extends the ResNet by prioritizing width over depth to enhance accuracy

(Zagoruyko & Komodakis, 2016). In a standard ResNet, residual blocks comprise convolutional

layers with the same number of filters, connected by skip connections. However, WideResNet
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widens these blocks by augmenting the number of filters in each convolutional layer, increasing

model capacity and feature complexity. Customization of the architecture is achieved through

control of depth (number of layers) and width (number of filters) via hyperparameters. The depth

is determined by the number of stacked residual blocks, while the width is controlled by the

"widen factor" denoted as "k." A higher "k" yields wider residual blocks. WideResNet often

employs a bottleneck architecture in its residual blocks, involving three convolutional layers:

1x1, 3x3, and 1x1 convolutions. This design balances computational complexity with feature

richness, with 1x1 convolutions handling dimensionality reduction and expansion, and the 3x3

convolution capturing spatial information.

For effective training, Batch Normalization precedes activation functions like ReLU in

each convolutional layer, stabilizing input distributions and promoting faster convergence while

mitigating the vanishing gradient problem. Skip connections (identity shortcuts) from ResNet are

retained, facilitating gradient flow during training in very deep networks. Global Average

Pooling (GAP) is the typical final pooling layer in WideResNet, replacing traditional fully

connected layers. GAP computes spatial feature map averages, reducing model parameters and

preventing overfitting. Weight initialization, such as He initialization, is critical in WideResNet

to ensure effective convergence. Regularization techniques like dropout and weight decay are

often employed to combat overfitting. Common optimization algorithms, including SGD with

momentum and Adam, are used for training WideResNet models.

WideResNet's contributions include serving as a base model for ensemble learning,

leading to performance boosts and robustness. Numerous architecture variants like WRN-SD and

WRN-D introduce dropout and stochastic depth for improved training stability and

generalization. Transfer learning with WideResNet on large datasets like ImageNet has led to
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state-of-the-art results in various tasks. Its adaptability extends to applications like object

detection, semantic segmentation, and generative modeling. Ongoing research explores the

relationship between model width, depth, and performance, while the machine learning

community has widely adopted WideResNet, with open-source implementations and pretrained

models readily available for further development and application in diverse domains.

Understanding Perturbations in Neural Networks

There are two types of adversarial attacks to increase loss in the model. The Projected

Gradient Descent (PGD) attack was introduced by Madry et al. in their paper titled "Towards

Deep Learning Models Resistant to Adversarial Attacks," which was presented at the

International Conference on Learning Representations (ICLR) in 2018 (Madry et al., 2017). The

authors include Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu.

The Projected Gradient Descent (PGD) attack is a popular adversarial attack method used

to fool machine learning models, especially deep neural networks. It is a white-box attack, which

means it assumes the attacker has access to the target model's architecture, parameters, and

gradient information (Wang et al., 2021). The main goal of the PGD attack is to craft an

adversarial example. An adversarial example is a slightly perturbed input data point that is very

similar to a legitimate input but can cause the model to make incorrect predictions. The goal is to

find a perturbed input x_adv that maximizes the loss J(θ, x_adv, y). The success of the PGD

attack is measured by the model's incorrect prediction on the crafted adversarial example. If the

model misclassifies the adversarial example, the attack is considered successful.

Notation:
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Let x be the legitimate input to the model.

Let y be the true label associated with x.

Let θ represent the model's parameters.

Let J(θ, x, y) be the loss function used to train the model, where θ are the model parameters, x is

the input, and y is the true label.

The PGD attack operates iteratively. In each iteration, the attacker:

- Computes the gradient of the loss with respect to the input:∇_x J(θ, x, y).

- Adversarially perturbs the input: x = x + α * sign(∇_x J(θ, x, y)), where α is a small step size.

- Clips the perturbed input to ensure it remains within the epsilon-ball around the original input:

x = clip(x, x - ε, x + ε).

- Repeats these steps for a predetermined number of iterations or until a stopping criterion is met

(e.g., reaching a certain number of iterations or achieving a successful adversarial example).

The Fast Gradient Sign Method (FGSM) is a simple but effective white-box adversarial

attack used to craft adversarial examples for machine learning models, particularly deep neural

networks. This attack was introduced by Ian Goodfellow and his colleagues in their paper titled

"Explaining and Harnessing Adversarial Examples" in 2015 (Goodfellow et al., 2014). The

primary goal of the FGSM attack is to generate an adversarial example from a legitimate input

that can cause the target model to make an incorrect prediction. The goal is to find a perturbed

input x_adv that maximizes the loss J(θ, x_adv, y). The success of the FGSM attack is typically
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measured by the model's incorrect prediction on the crafted adversarial example. If the model

misclassifies the adversarial example, the attack is considered successful.

Notation:

Let x be the legitimate input to the model.

Let y be the true label associated with x.

Let θ represent the model's parameters.

Let J(θ, x, y) be the loss function used to train the model, where θ are the model parameters, x is

the input, and y is the true label.

The FGSM attack operates in a single step. In this step, the attacker:

- Calculate the gradient of the loss with respect to the input:∇_x J(θ, x, y). This gradient tells

us how sensitive the loss is to changes in each feature of the input.

- Compute the sign of the gradient: sign(∇_x J(θ, x, y)). This gives us the direction in which the

input should be perturbed to increase the loss.

- Craft the adversarial example by adding the scaled gradient to the original input:

x_adv = x + ε * sign(∇_x J(θ, x, y))

These two attacks can lead to severe consequences and implications during exploitation

and prevention events.

Misclassification
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The primary goal of these attacks is to cause the model to misclassify input data. PGD

and FGSM perturb the input data in such a way that the model's predictions are no longer

accurate. In the world of art authentication, an adversarial attack could create convincing

counterfeit paintings that fool art experts and collectors. This could lead to the circulation of fake

artworks in the art market, devaluing genuine pieces and undermining the integrity of the art

industry. Such attacks highlight the importance of robust authentication methods in the art world.

Reduced Model Trustworthiness

Adversarial attacks undermine the trustworthiness of machine learning models. Users and

developers may lose confidence in the model's predictions, which can limit its practical utility,

especially in safety-critical applications like medical diagnosis or autonomous systems.

Security Risks

In applications where machine learning models are used for security purposes, such as

intrusion detection or spam filtering, PGD and FGSM attacks can be exploited by adversaries to

evade detection or gain unauthorized access. For instance, an attacker might craft an adversarial

example to bypass an email spam filter.

Robustness Evaluation

PGD and FGSM attacks are often used to evaluate the robustness of machine learning

models. By subjecting a model to these attacks, researchers can assess its vulnerability and

identify areas for improvement. The consequences in this context can be positive, leading to

more robust models when addressed appropriately.

Overfitting Concerns
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Defending against adversarial attacks can sometimes lead to overfitting. Models that are

overly robust against adversarial examples may perform worse on clean, real-world data.

Balancing robustness and generalization is a challenging trade-off in designing machine learning

models.

Increased Computational Complexity

Robustness against adversarial attacks often requires additional computational resources.

Defensive techniques like adversarial training, which involves training the model on both clean

and adversarial examples, can be computationally expensive and time-consuming.

Transferability

Adversarial examples generated using PGD and FGSM on one model can sometimes

transfer to other models, even those with different architectures. This means that an attack

against one model can potentially be used to deceive multiple models, amplifying the

consequences.

Ethical Concerns

Adversarial attacks can raise ethical concerns when they are used maliciously or

irresponsibly. For example, using adversarial techniques to manipulate content in deepfake

videos, misinformation campaigns, or other malicious activities can have serious social and

political consequences.

Selecting PGD for Robustness Testing
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For our experiment, we choose PGD for several reasons. PGD is an iterative attack, while

FGSM is a single-step attack. PGD performs multiple iterations, gradually perturbing the input to

maximize the loss. In contrast, FGSM computes the perturbation in a single step using the

gradient which makes it less effective at finding optimal perturbations compared to iterative

methods like PGD. The iterative nature of PGD allows it to explore a wider range of possible

perturbations, making it more effective. Thus, PGD can generate more subtle and

harder-to-detect adversarial examples. PGD is commonly used as a benchmark to evaluate the

robustness of machine learning models. Models that can withstand PGD attacks are considered

more robust. On the other hand, FGSM is often used as a baseline attack, and models that can

defend against FGSM may still be vulnerable to more sophisticated attacks like PGD.

Robustness Through Adversarial Machine Learning

To perform this experiment, we used xternalz’s Wide-ResNet code and made changes to

the code to adapt it for adversarial machine learning (Xternalz, 2017). Specifically, the code had

many lines that were not suited for usage on a cluster, and it only provided standard training and

clean testing. We removed the saving checkpoint and resume code during training because the

code was not working properly, and we only had a time limit of 24 hours to run the code before

the cluster was terminated. The tensorboard logging was removed because we only needed the

final results, but we didn’t need to visualize the process yet. After cleaning up the code, we

added some code in to do adversarial machine learning. New arguments --epsilon, --pgd-steps,

and --alpha were added to the argument parser. The pgd_attack function was added to perform

adversarial attacks using Projected Gradient Descent (PGD). The train_adversarial and

validate_adversarial functions were added to train and validate the model with adversarial
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examples. Additional logic for adversarial training and validation was added to the main training

loop.

Now, to compare the amount of lines in the code, we managed to reach from 283 lines in

the original code to 218-220 lines in the adversarial code measuring natural accuracy and robust

accuracy. This is about a 22% reduction, even though there were more new code added to

conduct adversarial machine learning. Although the code was trimmed down, it did not offer

faster training and testing because everything is reliant on the GPU, but having a smaller

codebase allowed us to troubleshoot and fix bugs that were previously found. We also had some

difficulties along the way. In the beginning, we used a 20 step PGD which caused a lot of

training to go above 24 hours and ended up being canceled. Also, the parameters were updated

during the generation of adversarial examples in the adversarial training. The model

configurations were also large because we used higher depths and widths, making the model

parameters massive. When generating adversarial examples, you want to perturb the input data to

find the worst-case scenario for model misclassification. If you don't set the model to evaluation

mode, it might track gradients, which is not necessary during adversarial example generation.

Disabling gradient tracking reduces unnecessary computation and ensures that the perturbations

you apply to the input data are not affected by the gradients. Setting the model to evaluation

mode also ensures deterministic behavior. The same input will produce the same adversarial

example across multiple runs, which is important for consistent evaluation.

To solve these problems, we had to lower the PGD to a step size of 10, reduce the model

configurations to be a maximum of depth 40 and width 6, and add model.eval to ensure that the

perturbations applied to the input data are not influenced by gradients and are based solely on the

model's current parameter values. Model.eval() is used to prepare your model for inference or
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evaluation tasks. It sets the model's behavior to be consistent with the assumptions of evaluation.

If the model is not in evaluation mode, we might inadvertently exaggerate the model's

vulnerability by introducing training-specific artifacts into the adversarial examples, which may

not accurately reflect real-world adversarial attacks. So once the adversarial examples are

generated, we can set the model back to training using model.train and repeat the process for

each epoch. So, using the original code and modified code, we tested for standard training and

natural accuracy, adversarial training and natural accuracy, and adversarial training and robust

accuracy. Additionally, we also broke up the configurations into categories like same width and

different depth, different depth and same width, and different depth and different width to

measure accuracies across them.

Identifying Optimal Configurations

Let’s talk about the main categories that we tracked and give some explanations. E.J had

the greatest increment in model parameter size with the largest model having a total of

20,117,466 million parameters. In contrast, 13,144,794 and 8,949,210 were the highest model

parameters for Nathan and Johnny, respectively. Models with a large number of parameters tend

to be slower to train because they require more computation to update and optimize these

parameters during the training process. As parameters increase, there is a correlation to longer

training and testing times. Hence, this is reflected in the adversarial training and robust testing

because it went over 24 hours. Hence, there is no result for it, due to the cluster expiring before it

has finished entirely. Meanwhile, the goal of tracking parameters is to see if larger models can

increase accuracy and remain competitive to smaller models within the constant of 24 hours.

There is a delicate balance between parameters and training with limited resources, in our case,

using one Tesla V100-SXM2-16GB for the GPU. The other categories include standard training
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and clean testing, adversarial training and robust testing, and adversarial training and clean

testing.

For regular training and testing, we got results in the high 90s. Looking at all of it, the

accuracy increases across the board for the same widths and different depths, same depths and

different widths, and different depths and widths. For example, WRN-10-1 and WRN-16-2 had

the biggest jump of about 6.07% increase. WRN-34-5 and WRN-40-6 had the smallest increase

of about 0.05%. Looking at these two extremes, we can tell that at smaller depths and smaller

widths, the accuracies increase greatly. However, once the depths and widths become larger, they

don’t yield the same percentage increase, leading to a small improvement. This indicates that

when choosing the model configuration of WRN-34-5 and WRN-40-6, the WRN-34-5 is the best

one because it has fewer parameters and still maintains the accuracy at ~96%. The likewise is

true for WRN-10-1 and WRN-16-2 because the WRN-16-2 has more parameters than

WRN-10-1, but it still computes relatively fast, due to its small width, which is ideal for

improving accuracy on smaller models. Once model configurations increase, there is a point

when the increase is minimal and the training time is not reasonable while wasting valuable

resources best suited for other tasks. I call this the gentle alteration because the accuracy hits a

plateau where any improvement is little and stays relatively the same, like a serene sunset,

slowly changing hues in the evening sky, with subtle shifts in colors that are barely perceptible.

When optimizing the model, there are other options like fine-tuning, quantization, or pruning that

can eke out accuracy while not resorting to retraining on larger and larger configurations until the

data is overfitting.

For adversarial training and clean testing, the accuracies were still mostly in the 90s, but

most of them had a 0.40-3.01% drop from the standard training and testing. This is expected
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because the model is trained on adversarial examples, but it also is trained from clean data in the

training dataset, so the accuracy is still high, but the model also is still evaluating on clean data in

the validation set. Since the model is only evaluating on clean data, it is really similar to the

standard training and clean testing results, but the drop in accuracy may show that the model

may fail to evaluate some of the clean data, due to the tradeoff of having adversarial training

evaluate on non-adversarial data. However, the slight decrease in accuracy proves that

adversarial training can also have high accuracies when evaluating on clean examples, which

since the model performs well on the clean data, it sets the stage for elevating the robustness and

still works great by default without being evaluated on adversarial data. For WRN-10-4, it had

the smallest decline of 0.40%, so it is both adversarial trained and evaluates almost as the

standard testing and training. This is ideal because when both accuracies are relatively close, the

configuration is at its peak in terms of classifying clean data and robustness. For WRN-40-4, as

the model parameters were the greatest in Johnny’s results, the accuracy actually dropped, so the

model does not compete with WRN-40-3, even though the other categories did have a slight

increase. Even though accuracy is a bit better in those categories, the decline in adversarial

training and clean testing indicates that perhaps the WRN-40-3 is the better choice as it is

competitive overall on all three accuracy categories. The lesson here is that in model selection,

it's crucial to prioritize overall performance and balance between complexity and generalization

rather than blindly chasing the model with the most parameters. As the saying goes, “a jack of all

trades is a master of none, but oftentimes better than a master of one.” Sometimes, compromising

on the accuracy can make the model better in real-time usage which the close results between

WRN-40-3 and WRN-40-4 suggests that favoring the smaller model can remain on par as

WRN-40-4 and reduce the time to train the model.
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For the adversarial training and robust testing, the accuracies are in 50s to 70s, but most

of them have a 22.50% -30.09% drop from the standard training and testing. Now, this time there

is a steep drop in accuracy which is due to the use of evaluation on adversarial examples after

undergoing adversarial training. The PGD attack, being the tenth step in the process, generates

highly potent perturbations specifically engineered to induce substantial loss and trigger a higher

rate of misclassifications within the dataset. As it is tested on real adversarial examples, it has

gained recognition for its robustness, given that the model is subjected to evaluation with actual

adversarial data. This comprehensive testing approach ensures that the model's performance

under adverse conditions is thoroughly examined. For WRN-35-4, it had the smallest decrease in

accuracy of 22.50%. In the real world, this model would be highly selected for robustness, due to

its high robust accuracy of 73.52%. In terms of security, it is always better to choose the highest

one because it will help stop many attempts to fool the model. Imagine picking a model with

lower security, but high accuracy versus one with high security and high accuracy. Almost

everyone will flock to the latter option because no one wants to have a bad experience when

using the model. Now, the WRN-10-1 is obviously the biggest decrease in accuracy of 30.09%.

Compared to the WRN-35-4, it is 7.59% lower which is a huge gap in terms of robustness. This

model would not be used in the real world because 58.21% is really close to a 6 out of 10 chance

to classify correctly. The remaining 4 out of 10 still leave a possible room for improvement.

Although it trains super fast, it compromises on robust accuracy.

The key takeaway from these results is that using adequate depths and widths to boost

robustness is better than using smaller models. As the parameters increased 14,741.45%, the

robust accuracy also increased which highlights a clear distinction that higher configurations

induce robustness. So, in this case, it is better to prioritize longer training times by upping model
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configurations to ensure that the model can learn better from the adversarial training in order to

create a more robust model, but keep in mind that more resources will be needed to train large

models. This presents a new type of problem that future research will address which is to

increase robustness without needing to increase model parameters.

Navigating the AI Robustness Discussion

Simplicity vs. Complexity

Contrary to the prevailing trend of using large, complex models, some argue that

simplicity and feature engineering can lead to more robust models (Gómez-Carmona et al.,

2019). They believe that overly complex models are inherently less interpretable and harder to

make robust. In our experiment, we used simple techniques to implement adversarial machine

learning and found that maintaining a compact codebase can help set up the basis for robustness.

As well as setting limits to model configurations and time constraint, it can help focus less on

increasing model capacity and more on using existing models to explore further options to boost

robustness. As models increase in parameters, they can also introduce more vulnerabilities to the

model, so reducing the size of the model can be the first step in fostering robustness. That being

said, sometimes different applications require larger model sizes, so it is inevitable that model

sizes will increase, but remember that if the code and model parameters increase, equal effort

should be put on making them secure and efficient, so they can be as lean as possible.

Overconfidence in AI Robustness

Some believe there is an overconfidence in the current state of AI robustness. They argue

that AI systems are still far from being truly robust in the face of real-world challenges and

should be treated with caution in critical applications (Franzoni et al., 2019). In our experiment,
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we achieved very high robust accuracies that even we are shocked that we managed to beat out

some benchmarks on RobustBench. As with all results, treat them with lots of skepticism and run

experiments on your own to verify the findings. Even then, look to see if some bugs exist or if

the code is missing some other important pieces. Our goal is to reveal all of our contributions to

the public and hopefully gather some discussion to improve upon research. Like all experiments,

even failed experiments can turn into blueprints for more ambitious projects. Although

robustness in adversarial machine learning is one metric to measure a model’s ability to correctly

classify perturbations, there are also other methods out there that don’t need perturbations to

successfully trick or bypass model restrictions. Carnegie Mellon University's recent research

reveals a critical vulnerability in large language models (Zou et al., 2023). These models can be

manipulated to generate unintended harmful responses by adding innocuous text to a query,

surpassing basic safety measures. Adversarial attacks on LLMs can now be more methodical,

using character sequences to trick the AI model. This underscores the need for improved

safeguards and responsible AI use. Continuous efforts are essential to ensure AI systems remain

safe and beneficial.

Robustness Trade-offs Are Unavoidable

Critics suggest that there's an inherent trade-off between robustness and performance.

Pushing for extreme robustness often leads to sacrificing too much in terms of accuracy and

efficiency (Raghunathan et al., 2020). They argue that it's better to find a balance tailored to

specific applications. Finding a balance between robustness and performance is akin to steering a

ship through turbulent waters. Pursuing extreme robustness, while admirable in its intent to

fortify against potential threats, can lead to unintended consequences. For instance, in the realm

of machine learning, an overemphasis on robustness may result in models that are overly
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cautious, leading to false alarms or a decline in overall accuracy. This is particularly evident in

adversarial settings, where models can become excessively conservative, sacrificing their

primary purpose of accurate predictions. Moreover, dedicating excessive resources to fortifying

against every conceivable threat can be inefficient and costly. By seeking a tailored balance, one

can address specific vulnerabilities without compromising the overall effectiveness and

efficiency of the system. This approach allows for a more nuanced and practical response to the

challenges posed by adversarial scenarios, ultimately resulting in more adaptable and versatile

solutions. While robustness is very important, the actual usage of the model is another aspect to

consider when putting it to the test, so if both of them can be best case scenario, then the model

will be able to be secure and produce useful results.

The Imperative Role of Adversarial Machine Learning

Real-World Relevance

Adversarial machine learning demonstrates its importance by addressing real-world

security concerns. In a world where machine learning is increasingly used in critical applications

like autonomous vehicles, healthcare, and finance, adversaries can exploit vulnerabilities for

malicious purposes. Adversaries can subtly modify road signs by adding small stickers or

graffiti-like alterations that may not be noticeable to the human eye but can confuse the vehicle's

image recognition system. As a result, the vehicle might misinterpret a stop sign as a yield sign

or vice versa, potentially leading to accidents or traffic violations. In medical imaging,

adversaries can introduce imperceptible noise or alterations to medical images, such as X-rays or

MRI scans. These manipulated images can mislead AI-driven diagnostic systems into detecting

non-existent diseases or missing real medical conditions, endangering patients' lives due to
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incorrect treatment or diagnosis. In high-frequency trading, adversaries can employ adversarial

algorithms to manipulate stock prices by placing a series of strategically timed buy or sell orders.

These manipulations can create false market trends, potentially causing market crashes or unfair

financial gains. Showing how adversarial attacks can compromise these systems highlights the

need for robust defenses.

Regulatory and Ethical Concerns

Adversarial attacks can highlight the need for regulatory frameworks and ethical

considerations in machine learning. This can be particularly compelling for audiences who are

concerned about the responsible development and deployment of AI technologies. The absence

of comprehensive regulatory practices on AI can be attributed to several factors. Firstly, the rapid

pace of technological advancement often outpaces the ability of regulatory bodies to keep up. AI

technologies evolve quickly, and crafting regulations that remain relevant and effective is a

complex and ongoing challenge. Additionally, the international nature of AI development

complicates matters, as regulations in one jurisdiction may not align with those in another,

creating potential conflicts and ambiguities. Furthermore, AI is a broad field with diverse

applications, making it challenging to create one-size-fits-all regulations. Balancing innovation

and regulation is a delicate act, as overly restrictive measures could stifle progress, while

inadequate oversight may lead to ethical and safety concerns. As a result, the absence of

comprehensive regulatory practices on AI reflects the need for a nuanced, collaborative, and

adaptive approach that considers the unique challenges posed by this rapidly evolving

technology.

Exposing Vulnerabilities
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Adversarial attacks expose vulnerabilities in machine learning models. This helps

convince the audience that machine learning is not infallible and that it's crucial to invest in

research and development to strengthen these systems. Just like stress-testing a bridge reveals

weaknesses, adversarial attacks reveal flaws in AI models. Investing in research and

development (R&D) to counter adversarial attacks is not just important; it is absolutely critical in

our technology-driven world. Adversarial attacks continually evolve, becoming more

sophisticated and dangerous. Whether it's the potential manipulation of autonomous vehicles,

financial fraud through compromised algorithms, or misinformation spread via AI-generated

content, the consequences can be far-reaching and devastating. Without robust R&D efforts, we

risk falling behind malicious actors who exploit vulnerabilities in AI systems. By prioritizing

research, we empower ourselves to stay ahead in the ongoing arms race against adversarial

attacks. This proactive approach enables us to develop cutting-edge defenses, resilient

algorithms, and innovative strategies to protect critical systems, data, and privacy, ensuring the

continued advancement and safe adoption of AI technologies across various sectors. In an era

where technology's influence grows daily, research is not just important; it's our best defense

against the looming threat of adversarial attacks.

Public Perception

Public perception plays a crucial role in the adoption of AI technologies. If the audience

understands that adversarial attacks can erode trust in AI systems, they may be more inclined to

support measures to improve security and reliability. Education and awareness campaigns are

instrumental in shaping this perception. When the general public is well-informed about the

potential vulnerabilities and consequences of adversarial attacks on AI systems, they are more

likely to become advocates for robust security measures. This awareness not only empowers
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individuals and organizations to make informed decisions about AI adoption but also instills a

sense of responsibility among developers and users. They are less likely to fall victim to

misinformation or fearmongering regarding AI. A well-informed public can discern between

genuine concerns and unfounded fears, which can lead to a more balanced and constructive

discourse surrounding AI adoption. They are more likely to engage in conversations and debates

on AI ethics and safety. These discussions can drive innovation in security and reliability,

fostering the development of new technologies and strategies to combat threats. Awareness of

adversarial attacks can promote international cooperation and collaboration in addressing AI

security challenges. As AI is a global technology, shared understanding and efforts to enhance

security can lead to a more secure and reliable AI ecosystem on a global scale. In conclusion,

public perception is not merely a passive factor in AI adoption; it is a dynamic force that can

shape the industry's future and ensure that AI technologies meet the highest standards of security

and reliability.
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