
Strong Passwords

1

Strong Passwords

Cameron Waddy

Old Dominion University

CYSE-250 Cybersecurity Programming and Networking

Dr. Rashid Ali Khan

December 6, 2021

Strong Passwords

2

 An area where many people create extremely vulnerable confidential information is from
weak passwords. Most people use a person, pet, year, or place that is important to them. Creating
password without a wide variety of characteristics also means that you have a weaker password.
Another area where a user can be susceptible to an attack is by using repetitive passwords across
many domains or devices. To help a user decide if a password is strong enough to be used, we
created a program. This program will check the user’s input for several things. We will refer to
these as flags. These flags are lowercase letters, uppercase letters, special characters, numbers,
and the length of the password. Simultaneously, the program will be checking these flags and
assigning a score. This assigned score will inform the user of the strength of the password. If the
password has a score of 0, the base score, then the password can be easily cracked by a hacker.
On the opposite end, if the user’s inputted password gains a score of 35, which is the highest
score, then the password cannot be easily cracked and is a strong and reliable password to use.
The total score of 35 means that all the criteria is met that was previously explained above. For
this program, the MacBook Pro was used on the software version macOS Monterery Version
12.0.1. The platform used to compose the program was IntelliJ IDEA 2021.2.3 (Community
Edition).
 In this program, we assigned the values of ‘False’ to the several character types. This was
so that if a character type was found within the user’s password, it would be changed to ‘True’. If
the value of the character types were changed to ‘True’, a line would be printed out saying that
there was that character in the password. If the character type was not found within the password,
the value of the character would continue to be set to false and inform the user by printing that
the character was not found and needs to be tried again. This was done by using if/else
statements.

At the beginning of the program, we assigned the score value to 0. The value of
lowercase, uppercase, special, and number being changed to ‘True’ adds points to the final score
of the password. Separately from the ‘True’ and False’ values, the program checks the length of
the password. The length of the password is checked twice in this program. The first time the
length is checked is in the fourth block of code. This first check informs the user if the password
reaches the minimum of 8 characters, regardless of the characters used. The second check
contributes to the score. If the length is reached or exceeds 8 characters, then 10 points are given.
The score break down for the other characteristics are 10 points for both uppercase and
lowercase being found, if a number is found with uppercase and lowercase then another 10
points will be assigned, if a special character is found then 5 points will be added. Any score
under 35 in this program will be considered a weak password.
Having a variety of characters is the key to a strong and successful password. Using this program
will help keep users using strong passwords and to be creative in their password creation. I have
provided four separate outputs of this code to show the accuracy of the program and the different
scores that are produced when foregoing on certain characteristics. In “Output.1” all of the
criteria was met using a complex password. The password had lowercase characters, uppercase
characters, special characters, numbers, and exceeded eight characters. This gave the password a
score of 35 out of 35. In the next execution of code, “Output.2”, I used a simple password with
all lowercase characters and two numbers. This gave a password score of 10 out of 35. The
password can be easily cracked with any hacking tool. There were no uppercase characters,
special characters, and it was less than eight characters long. In “Output.3”, I included all the
types of characters excluding the minimum length needed. This gave a password score of 25 out
of 35. In the final execution of code, “Output.4”, the inputted password used all uppercase letters

Strong Passwords

3

with a single number. This had the code notify the user of the missing character types as well as
the inadequate length of the password. The final password score of this code is 10 out of 35.
 Passwords can be seen as the first line of defense against intruders. Having strong
passwords will protect your confidential information. However, using weak passwords will
expose you to identity theft among many other attacks or thefts. This program will help younger
people understand how to create strong passwords. It is also beneficial for older people who are
not well versed in technology and cybersecurity. Although this guides users in the direction for
better passwords, it must be reinforced to use different passwords for different sites. The reason
to use separate passwords is in the scenario where one password is cracked by an intruder, they
will not be able to access other accounts by using the same password. The difficulty of this
project in my opinion is medium. The program was produced from using multiple if/else
statements, a for loop, and more if statements. I attempted to include a while loop which I
struggled with working code when attempting to do so. I wanted the code to re-execute
automatically after asking if the user would like to try again, if the user answered yes, then the
code would execute again. If the user entered no, then it would exit the program. However, I
already had a working program that just needed to be re-run at the end of each single entry. If I
was able to include this extra feature then I would say it would have been a harder difficulty.

Output.1

Strong Passwords

4

Output.2

Output.3

Strong Passwords

5

Output.4

Strong Passwords

6

Appendix

This first set of code asks for the users potential password.
The user will input their password and assign it to password.
score is used to rate the strength of the password. 0 is the base value
with no strength.
password = input("Type your password:")
score = 0

This set of code sets the values of the characters to False
lowercase = False
uppercase = False
number = False
special = False

This set of code checks if the user inputted password has the different
types of characters.
If the password includes the character, the value will be set to True.
for character in password:
 if character in "abcdefghijklmnopqrstuvwxyz":
 lowercase = True
 elif character in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
 uppercase = True
 elif character in "! @ # $ % ^ & * () _ - : ; ' , . < > / ? \ | + = ":
 special = True
 elif character in "1234567890":
 number = True

This section checks if the character types match the user given password
If the character type is in the user given password, it will print that it
has the character.
If the user given password does not have the character type, the code will
print that the user must try again.
if lowercase == True:
 print("Password contains at least one lowercase character.""")
else:
 print("No lowercase character. Try again.")
if uppercase == True:
 print("Password contains at least one UPPERcase character.")
else:
 print("No UPPERcase character. Try again.")
if special == True:
 print("Password contains at least one special character.")
else:
 print("No special character. Try again.")
if number == True:
 print("Password contains at least one number character.")
else:
 print("No number character. Try again.")
if len(password) >= 8:
 print("Password contains at least 8 characters.")
else:
 print("There are less than 8 characters. Try again.")

If a value is true, points will be assigned to the password score (strength

Strong Passwords

7

of the password).
The strongest password will have the value of 35. All scores will be based
out of 35.
if lowercase == True and uppercase == True:
 score = score + 10
if number == True and (lowercase==True or uppercase==True):
 score = score + 10
if special == True:
 score = score + 5
if len(password) >= 8:
 score = score + 10

This line of code prints the password score out of 35.
print("Your password score is: ", score, "out of 35")

