Group 1: Dave Buonconsiglio, Richard Harrell, Devon Moore, Traveon Williams,

MET 330

Dr. Ayala

September 8, 2021

HW #1.1

48.

A coining press is used to produce commemorative coins with the likenesses of all the U.S. presidents. The coining process requires a force of 18,000 lb. The hydraulic cylinder has a diameter of 2.50 in. Compute the required oil pressure

Given:

F=18,000 lb d= 2.50 in

Formulae: P=F/A

 $A=(\pi/4)d^2$

Solve:

Find area of coin face

A 4.908739

Solve for pressure with given force and calculated area

p 3666.93 lb/in²

P≈3.6*10³ psi

58.

Compute the pressure change required to cause a decrease in the volume of mercury by 1.00 percent. Express the result in both psi and Mpa

Given:

Hg ↓1%v Find:

Eng

3590000 psi 24750 Mpa Table 1.3

Formulae: E=((-Δp)/((ΔV)/V)

Solve: $E=((-\Delta p)/((\Delta V)/V)$

 $E=(-\Delta p)/(\Delta V)$

 $E(\Delta V)=-\Delta p$

 $(-\Delta p)=E(\Delta V)$

psi: -35900 Mpa: -247.5

Solution:

Δp required to decrease volume by 1%:

psi:	35.9*10 ³
Mpa:	247.5

A measure of the stiffness of a linear actuator system is the amount of force required to cause a certain linear deflection. For an actuator that has an inside diameter of 0.50 in and a length of 42.0 in and that is filled with machine oil, compute the stiffness in lb/in

Given: id=0.50 in

L=42.0 in

machine oil E: 189000 psi Table 1.3

Formulae: $E=((-\Delta p)/((\Delta V)/V)$

 $A=(\pi/4)d^2$

Solve: $E=((-\Delta p)/((\Delta V)/V)$

 $E=(-pV)/\Delta V$

p=(F/A)

V=(A*L)

 $\Delta V=-A(\Delta L)$

 $E=(-(F/A)*(A*L))/(-A(\Delta L))$

 $E=(FL)/(A(\Delta L))$

 $(EA/L)=(F/\Delta L)$

A: 0.19635

F/ΔL: 883.5729

Stiffness: 883.6 lb/in

76.

ī

1.76;
$$F = M * A$$

32.2 ft/S^2

$$1slug = 14.594kg$$

32.2lb = 1slug *

 $M = \frac{1}{32.2} = .031 = \frac{3.1 * 10^{-2} slug}{10^{-2} slug}$

$$3.1*10^{-2}slug*14594kg = 0.452kg$$

$$W = M * g = 0.452kg * 9.8 m/S^2 = 4.42kgM/S^2 = 4.42N$$

A cylindrical container is 150 mm in diameter and weighs 2,25 N when empty. When filled to a depth of 200 mm with a certain oil, it weighs 35.4 N. Calculate the specific gravity of the oil

W₂

Given: d=150 mm

m₃= 2.25 N

W₁ 0.229357798 kg

0.017671 m³

Δz=200 mm

m₂=35.4 N

3.608562691 kg

V=AxΔz 0.003534 m³

Formulae:

$$sg = \frac{\gamma_s}{\gamma_w@4^\circ\text{C}} = \frac{\rho_s}{\rho_w@4^\circ\text{C}}$$

$$\gamma = \frac{w}{v}$$

$$\rho = \frac{m}{V}$$

Data:

$$\gamma_{\rm w}$$
@4°C = 9.81 $^{kN}/_{m^3}$

$$\rho_w$$
@4°C = 1000 $^{kg}/_{m^3}$

Solve:

$$w = \frac{m}{g}$$

m_{si/}=m₂-m₁ 33.15 N

w 3.37920489 kg

ρ_{ol} 956.1194

sg 0.9561194

[Grab your reader's attention with a great quote from the document or use this space to emphasize a key point. To place this text box anywhere on the page, just drag it.]

Alcohol has a specific gravity of 0.79. Calculate its density both in slugs/ft³ and g/cm³

Given: Alcohol

sg= 0.79

Formulae: $sg = \frac{\gamma_s}{\gamma_w@4^{\circ}C} = \frac{\rho_s}{\rho_w@4^{\circ}C}$

 $\gamma = \rho g$

Data: $\gamma_w@4^{\circ}\text{C} = 9.81 \frac{kN}{m^3}$

g 32.2 ft/s² 9.81 m/s²

 $\gamma_w@4^{\circ}C = 62.4^{\ lb}/ft^3$

1000 $^{kg}/_{m^3} = 1 \frac{g}{cm^3}$

 ρ_w @4°C = 1000 $^{kg}/_{m^3}$

 $\rho_{\rm W}@4^{\circ}{\rm C} = 1.94 \frac{slugs}{ft^3}$

Solve: p=sg*g

 ρ_{slugs}
 1.53
 slugs/ft³

 ρ_{grams}
 0.79
 g/cm³

18.	Water at 40°C - 6,3×10-4
27	Hydrogen at 40°F 1.8×10-7
35	SAE 30 oil at 210°F 2.7×10-4
17	non-newtonian fluids - Ketchup, tooth paste, honey paint
61	Steel ball 1.6mm dia free fall heavy fiel oil 39, of .94
	77 KN/m3 250 mm in 10.48 Viscosity?
	r=.0008m
	density = . 94x 1000 = 940 kg/m3
	steel donsity = 77 FN/m3/9.81 m/s2 = 1849 kg/m3
0	$V = D/t = .25/10.4 = .024m/s$ $V = \frac{1}{2} (p - 0) \Gamma^{2} = 2(7849.946)(.0808)^{2}(9.81)$ $V = \frac{1}{2} (p - 0) \Gamma^{2} = 2(7849.946)(.0808)^{2}(9.81)$
	= .402 Pa.s