Devon Moore

MET 350

Dr. Ayala

November 19, 2021

Exam 3 Pretest

Α.

Purpose:

Determine the pump power when the bypass gate valve is closed. **Drawings and Diagrams:**

Sources:

Convert to. (n.d.). Retrieved November 22, 2021, from http://convert-to.com/conversion/power/convert-ft-lb-per-sec-to-hp.html.

Endmemo. EndMemo. (n.d.). Retrieved November 22, 2021, from http://www.endmemo.com/sconvert/galus_minft3_s.php.

Mott, R., Untener, J.A, "Applied Fluid Mechanics", 7th edition, Pearson Education, Inc (2015)

Design Considerations:

- Constant Properties
- Incompressible Fluids
- Water @ 160°F
- Standard Elbows
- Reducer assumed to be 50-60 degree gradual from 3in to 1in
- Reduced assumed to be sudden with 3 m/s CV from 4in to 3in
- Expander assumed to be 60 degree gradual from 1in to 3in

Data & Variables:

- γ= 61 lb/ft³
- v= 4.38E-6 ft²/s
- Suction diameter 0.3355 ft
- Suction area 0.08840 ft²
- Suction length 10 ft
- Discharge diameter 0.2557 ft
- Discharge area 0.05132 ft²
- Discharge length 40 ft
- ΔZ= 10.5 ft
- K_{HE}= 12
- Left pipe diameter 0.2557 ft
- Left pipe area 0.05132 ft²
- Left pipe length 8 ft
- Bypass pipe diameter 0.0874 ft
- Bypass pipe area 0.00600 ft²
- Bypass pipe length 30 ft
- K_{red 3-1}=0.079
- K_{red 4-3} = 0.14
- K_{exp 1-3}= 0.71
- K_{GV}= 8f_t
- K_{Tees}= 60f_t
- K_{elbows}= 30f_t
- K_{CV}= 100f_t
- K_{Entrance}= 0.5
- e = 0.00015
- n= 0.7
- Q= 275 GPM

Materials:

- Schedule 40 Steel pipe
- Water

Procedure:

- 1. Rearrange Bernoulli's to solve for pump head.
- 2. Solve for the pump head in the left branch.
- 3. Plug pump head into equation 13-2 from the textbook to determine pump power.
- 4. Use equation 13-4 from the textbook to determine the power input to the pump.

Calculations:

V8 24 + 28 + 44-8 + 4a $\frac{4Q}{\pi D^2} = \frac{4(a_1b_1275+5k)}{F1(0.5355+2)} = \frac{VB^2}{G(45H)_5}$ $\frac{\pi D^2}{h_{L} \rho_{i} \rho_{cs}} = \frac{f}{f} \frac{C}{D} \frac{V^2}{2q} = \frac{G}{2q} \frac{104}{G} \frac{104}{G} \frac{G}{3} \frac{104}{G} \frac{G}{4} \frac{104}{G} \frac$ $f = \frac{(0.25)}{\log \left[\frac{1}{3.7} \frac{1}{16} \pm \frac{5.74}{Nr^{0.9}} \right]^2} = \frac{0.25}{\log \left[\frac{37}{23.67} \right]^{\frac{1}{5.74}}} = \frac{5.74}{5.74}$ F= 0.0297 Minor Loss Example Calc: how = K 29 = 8 Ft (6.93 Ft/s)= 0.175 Ft $ft = \frac{(0.25)}{(u_{y})^{\frac{1}{3}} - 0.0294} = \frac{(0.75)}{(u_{y})^{\frac{1}{3}} - 0.0294}$ hu = 10.5ft + 11.93ft/62 + 53,794 = 66,514 $P_{H} = \gamma h_{u} Q = (G_{1} + 1/4)(G_{0} + 5/4)(G_{0} + 1/2)(G_{0} +$

Excel work:

Q	275	GPM	0.6127	ft^3/s
У	61	lb/ft^3		
viscosity	4.38E-06	ft^2/s		
delta_Z	10.5	ft	1	
n	0.7		1	
e	0.0015			
	4 in			
d_suction	0.3355	ft		
a_suction	0.0884	ft^2		
L_suction	10	ft		
				-
Entrance Loss			2	
К	0.5			
V	6.930668	ft/s		
V^2/g	0.745872			
hL	0.372936	ft		
Gate Value				
	0			
D/e	223 6667			
6/C	0.020265			
v	6 020669	ft/c		
VA2/a	0.745972	145	1	
hl	0.175219	ft		
	0.175215			
Pipes				
Nr	5.31E+05		1	
D/e	223.6667			
f	0.0297			
V	6.930668	ft/s		
V^2/g	0.745872		1	
L/D	29.80626	ft		
hL	0.01955	ft		
Reducer				
К	0.14			2
V	6.930668	ft/s		
V^2/g	0.745872			
hL	0.104422	ft		
3 in				
d_discharge	0.2557	ft		
a_discharge	0.05132	ft^2		

Elbows			Left pipe (3	in)	
К	30		d_left	0.2557	ft
D/e	170.4667		a_left	0.05132	ft^2
ft	0.031891		L_left	8	ft
v	11.9316	ft/s	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
V^2/g	2.210607		Heat Exchan	ger	
hL	4.229957	ft	К	12	
			V	11.9316	ft/s
Gate Valve			V^2/g	2.21061	
к	8		hL	26.5273	ft
D/e	170.4667				
ft	0.031891		Gate Valve	5	
v	11.9316	ft/s	К	8	
V^2/g	2.210607		D/e	170.467	
hL	0.563994	ft	ft	0.03189	
			V	11.9316	ft/s
Check Valve			V^2/g	2.21061	-
к	100		hL	1.69198	ft
D/e	170.4667				
ft	0.031891		Elbows		
v	11.9316	ft/s	к	30	
V^2/g	2.210607		D/e	170.467	
hL	7.049928	ft	ft	0.03189	
			v	11.9316	ft/s
Pipes			V^2/g	2.21061	-
Nr	6.97E+05		hL	4.22996	ft
D/e	223.6667				
f	0.0296		Tees Branc	h	
v	11.9316	ft/s	к	60	
V^2/g	2.210607		D/e	170.467	
L/D	156,4333	ft	ft	0.03189	
hL	0.302826	ft	V	11.9316	ft/s
			V^2/g	2.21061	2,5
hL discharge	12.81883	ft	hL	8.45991	ft
hL total	53,79918	ft			
			Pipes		
			Nr	6.97E+05	
			D/e	170,467	
			f	0.0321	
			V	11,9316	ft/s
			V^2/g	2,21061	
			L/D	31 2867	ft
			hl	0.07121	ft
				0.07121	
			hl left	40 9802	ft
			m_ien	40.5005	

ha_pump	66.5098	ft	1.	
P_A	2485.8	ft-lb/s	4.51962	HP
P_1	3551.14	ft-lb/s	6.4566	HP

Summary:

The pump head is 66.5 ft. Using equation 13-2 we find Pa to be 2485.8 ft-lb/s which is 4.52 HP. Using equation 13-4 we find Pi to be 3551.14 ft-lb/s which is 6.45 HP.

Analysis:

Only the losses in the suction, discharge, and heat exchanger branches are accounted for because the gate valve in the bypass branch is closed. Because ha is affected by energy losses, when the gate valve is opened, the pump head will increase if the flow rate is held constant.

Purpose:

Determine the flow rate if the gate valve in the bypass line is at open to at different intervals. **Drawings and Diagrams:**

Sources:

Convert to. (n.d.). Retrieved November 22, 2021, from http://convert-to.com/conversion/power/convert-ft-lb-per-sec-to-hp.html.

Endmemo. EndMemo. (n.d.). Retrieved November 22, 2021, from http://www.endmemo.com/sconvert/galus_minft3_s.php.

Mott, R., Untener, J.A, "Applied Fluid Mechanics", 7th edition, Pearson Education, Inc (2015)

В.

Design Considerations:

- Constant Properties
- Incompressible Fluids
- Water @ 160°F
- Standard Elbows
- Reducer assumed to be 50-60 degree gradual from 3in to 1in
- Reduced assumed to be sudden with 3 m/s CV from 4in to 3in
- Expander assumed to be 60 degree gradual from 1in to 3in

Data & Variables

- γ= 61 lb/ft³
- v= 4.38E-6 ft²/s
- Suction diameter 0.3355 ft
- Suction area 0.08840 ft²
- Suction length 10 ft
- Discharge diameter 0.2557 ft
- Discharge area 0.05132 ft²
- Discharge length 40 ft
- ΔZ= 10.5 ft
- K_{HE}= 12
- Left pipe diameter 0.2557 ft
- Left pipe area 0.05132 ft²
- Left pipe length 8 ft
- Bypass pipe diameter 0.0874 ft
- Bypass pipe area 0.00600 ft²
- Bypass pipe length 30 ft
- K_{red 3-1}=0.079
- K_{red 4-3} = 0.14
- K_{exp 1-3}= 0.71
- K_{GV}= 8f_t
- K_{Tees}= 60f_t
- K_{elbows}= 30f_t
- K_{CV}= 100f_t
- K_{Entrance}= 0.5
- e = 0.00015
- n= 0.7
- GV ¼ L_e/D= 900
- GV ½ L_e/D= 160
- GV 3/4 L_e/D= 35

Materials:

- Schedule 40 Steel pipe
- Water

Procedure:

- 1. Using the pump power from part A and use equation 13-2 to replace pump head in Bernoulli's, rearrange Bernoulli's to solve for flow rate.
- 2. Calculate the energy losses for all the components
- 3. Starting with the gate valve fully closed solve for flow rate to verify it comes close to 275 GPM.
- 4. Next starting with the gate valve ¼ open use excel to iterate for each interval and solve for the flow rate in each branch
- 5. Add the flow rates to determine the total flow rate at each interval.

Calculations:

Pa= ThaQ = Ta = ha a = ZB + 16Q2 he wowen 3 (1001 2) + kgv 1002 1 + kev 1002 1 + f2 + 2 (Kelb + f2 Pa HOQ2 1 + HE 1492 1642 there 16 Qz i hebruch 3 Ken 1691 1 + ky 1091 1 + fi 61 1692 1 + Kend 1695 Ken 1091 29 + ky M20 29 + fi 01 1001 29 + Kend 17202 2 (kels 16 Q: 1) + ky 16 Q2 1 + kc 10 Qe 1 + 6210 QE 1 MD 2 20) + ky 10 Q2 20 + kc HD2 20 + F D2 MOLTS 6 13 16 95 1 to ktres 14 93 1) the 14 93 1 they 16 93 1

 $\frac{P_{A}}{\gamma Q} = -23 - 39.95 \cdot Q_{1}^{2} - 921.174 \cdot Q_{1}^{2} - 59.226 \cdot Q_{1}^{2}}{372.92 + 199080.743 + (5%) \cdot (9'.504)}$ PA -23 -39.45 Q2 -921,172 12 Q2-5922 184.23 fz -107.47 QT= Q2+Q3 % diff= Qinew - Qioid X100 Qinew Re= VD $V = \frac{UQ}{\pi D^2}$ % Sift = fnew - fad x100 frew

Excel Work:

	Part A	У	61	lb/ft^3
	P_I	viscosity	4.38E-06	ft^2/s
	3551.1363	delta_Z	10.5	ft
		n	0.7	
PA	2485.7954	e	0.0015	
		V	5.88859	•Q_1^2
			4 in	
		d_suction	0.3355	ft
		a_suction	0.0884	ft^2
		L_suction	10	ft
		Entrance Loss		
		К	0.5	
		V	0	ft/s
		V^2/g	0	
		hL	0.99342	Q_1^2
		Gate Valve		
		К	8	
		D/e	223,667	
		ft	0.02936	
		hL	0.46675	Q_1^2
		Pipes		
		Nr	0.00E+00	
		D/e	223.667	
		f	#DIV/0!	
		V	0	ft/s
		V^2/g	0	
		L/D	29.8063	ft
	_	hL	59.2205	f_1*Q_1^2
		Reducer		
		К	0.14	
		V	0	ft/s
		V^2/g	0	
		hL	0.27816	Q_1^2
		3 in		
		d_discharge	0.2557	ft
		a_discharge	0.05132	ft^2

1	1 1.	8 8		Elbaura			I aft also 12 in		12	T
	1 m	0.0974	4	EIDOWS	20		d loft	0.2557	4	+
	o_bypass	0.0074	1L 640.2	N D/o	170 467		a_left	0.05122	1L 64A2	+
	a_bypass	0.006	10.2	D/e	1/0.40/		a_ien	0.05152	n2	+
	L_bypass	30	π	π	0.03189		L_Ieπ	8	π	+
	Coto Malar						In the Freedom and			+
	Gate valve				44 9677	1	Heat Exchange	er da		+
	K	8		nL	11.26/7	Q_1^2	ĸ	12	8	+
	D/e	58.2667								+
	ft	0.04591		Gate Valve						-
	1/4 Le/D	900		K	8		hL	70.6631	Q_2^2	+
	1/2 Le/D	160		D/e	170.467					1
	2/3 Le/D	35		ft	0.03189		Gate Valves			1
	hL_1/4	19.8047	Q_3^2				К	8	3	
	hL_1/2	19.8047	Q_3^2				D/e	170.467		
	hL_2/3	19.8047	Q_3^2	hL	1.50236	Q_1^2	ft	0.03189		
	hl_open	158.437	Q_3^2							
	hl_close	0	Q_3^2	Check Valve						
	Tees Branch			K	100		hL	3.00472		
	К	60		D/e	170.467					
	D/e	58.2667		ft	0.03189		Elbows			
	ft	0.04591					к	30		
				1			D/e	170.467		T
				hL	18,7795	0 1^2	ft	0.03189		
	hL	32,4393	0.3^2						(t
1			~	1					2	
	Reducer			1			bl	11 2677	0 242	
	K	0.079		1				11.2077	ale e	
	hl	34 0813	0.342	1			Tees Branch		1	
	112	34.0013	0.52	1			V	60		
	overander	5 8		Dinor			D/o	170 467		
	expander	0.71		ripes	156 422		D/E	0.02100		+
		205.2	0.242		100.400	A 180 140	n	0.05169		+
	nL	500.5	Q_3.2	nL.	921.172	1_1·U_1·2			2	+
	0.	5		late all and a second	24 0270	0 140	F1	00 5054		+
	Pipes	-		nL_discharge	31.8278	Q_1~2	nL	22.5354		+
	Nr	#DIV/0!		hL_suction	1./3833	Q_1^2	_			+
	D/e	58.2667		hL_suction pipe	59.2205	t_1*0_1^2	Pipes			+
	f	#DIV/0!		hL_discharge pipe	921.172	f_2*Q_1^2	Nr	0.00E+00	1	+
							D/e	170.467		-
							f	#DIV/0!		4
	L/D	343.249	ft	hL_total	139.299	ft	V	0	1	1
	hL	148081	f_3*Q_3^2				V^2/g	0	1	1
	hL_bypass 1/4	372.821	Q_3^2				L/D	31.2867	ft	
	hL_bypass 1/2	372.821	Q_3^2			hL_3in pip	184.234397	f_2*Q_2^	2	
	hL_bypass 2/3	372.821	Q_3^2	3						
	hL_bypass Oper	372.821	Q_3^2			hl_left	107.470977	Q^2		
	hL_bypass Clos	372.821	Q_3^2							
		1								
										-

			1110			
ITERATIO			1/4 Open	1		
TERATIO	1					
f1=	0.01					
f2=	0.01					
f3=	0.01					
				NEW		
ub-Iteratio	Q1 (ft^3/s	RHS 01	RHS 02	Q1 (ft3/s)	%diff Q3	
1	0.149000	0.14801	0.00082	0.14883	-0.11%	
	0.620000	0.57619	0.04295	0.61914	-0.14%	
	110 101	10 10 1	10 10 1	0-1	D -2	
	V1 (ft/s)	V2 (ft/s)	V3 (ft/s)	Rel	Re2	Re3
	1.68543	2.88228	0.13705	1.29E+05	1.68E+05	2.73E+03
	NEW f1	NEW f2	NEW f3	%diff f1	%diff f2	%diff f3
	0.03038	0.03259	0.06049	-203.76%	-225.87%	-504.91%
ITERATIO	2					
f1=	0.03038					
f2=	0.03259					
f3=	0.06049					
				NEW		
ub-Iteratio	Q1 (ft^3/s	RHS 01	RHS 02	Q1 (ft3/s)	%diff Q3	
1	0.586000	0.55192	0.03568	0.5876	0.27%	
	V1 (ft/s)	V2 (ft/s)	V3 (ft/s)	Re1	Re2	Re3
	6.62861	10.74789	5.94688	5.08E+05	6.27E+05	1.19E+05
	NEW/ F1	NEW fo	NEW F2	W diff f1	% diff f2	9/ diff #2
-	NEW TI	NEW 12	IVEVV TS	20011111	%um12	%um 13
	0.02967	0.03211	0.04648	2.34%	1.4/%	25.17%

ITERATIO	3		0			-
f1=	0.02967					
f2=	0.03211					
f3=	0.04648					
				NEW		
b-Iteratio	21 (ft^3/s	RHS 01	RHS 02	Q1 (ft3/s)	%diff Q3	
1	0.587596	0.55089	0.03704	0.58793	0.06%	
	V1 (ft/s)	V2 (ft/s)	V3 (ft/s)	Re1	Re2	Re3
	6.64667	10.72793	6.17416	5.09E+05	6.26E+05	1.23E+05
	NEW f1	NEW f2	NEW f3	%diff f1	%diff f2	%diff f3
	0.02967	0.03211	0.04646	0.00%	0.00%	0.04%
			1/2 Open	Č		
ITERATIO	4					
f1=	0.02967					
f2=	0.03211					
f3=	0.04646					
				NEW		
b-Iteratio	Q1 (ft^3/s	RHS 01	RHS 02	Q1 (ft3/s)	%diff Q3	
1	0.595000	0.53889	0.05621	0.5951	0.02%	
	V1 (ft/s)	V2 (ft/s)	V3 (ft/s)	Re1	Re2	Re3
	6.73042	10.49424	9.36947	5.16E+05	6.13E+05	1.87E+05
	NEW f1	NEW f2	NEW f3	%diff f1	%diff f2	%diff f3
	0.02966	0.03211	0.04629	0.01%	-0.01%	0.37%
			2/3 Open	ļ		
ITERATIO	5					
f1=	0.02966					
f2=	0.03211					
f3=	0.04629					
				NEW		
b-Iteratio	Q1 (ft^3/s	RHS 01	RHS 02	Q1 (ft3/s)	%diff Q3	
1	0.598000	0.53397	0.06389	0.59786	-0.02%	
_						
	V1 (ft/s)	V2 (ft/s)	V3 (ft/s)	Re1	Re2	Re3
	6.76435	10.39842	10.64938	5.18E+05	6.07E+05	2.13E+05
_	NEW f1	NEW f2	NEW f3	%diff f1	%diff f2	%diff f3
	0.000000	0.00044	0.01001	0.000/	0.010/	0.000/

		F	Fully Oper	n			
ITERATIO	6						
f1=	0.02966						
f2=	0.03211						
f3=	0.04624						
				NEW			
b-Iteratio	Q1 (ft^3/s	RHS 01	RHS 02	Q1 (ft3/s)	%diff Q3		
1	0.597863	0.53419	0.06622	0.60041	0.43%		
	V1 (ft/s)	V2 (ft/s)	V3 (ft/s)	Re1	Re2	Re3	
	6.76280	10.40269	11.03726	5.18E+05	6.07E+05	2.20E+05	
	NEW f1	NEW f2	NEW f3	%diff f1	%diff f2	%diff f3	
	0.02966	0.03211	0.04623	0.00%	0.00%	0.02%	
		F	ully Close	d			
ITERATIO	7						
f1=	0.02966						
f2=	0.03211						
f3=	0.04623						
				NEW			
b-Iteratio	Q1 (ft^3/s	RHS 01	RHS 02	Q1 (ft3/s)	%diff Q3		
1	0.575000	0.57097	0	0.57097	-0.70%		
							1
			1				
	V1 (ft/s)	V2 (ft/s)	V3 (ft/s)	Re1	Re2	Re3	
	6.50419	11.11887	0.00000	4.98E+05	6.49E+05	0.00E+00	
	NEW f1	NEW f2	NEW f3	%diff f1	%diff f2	%diff f3	

Summary:

The total flow rate is approximately 0.59 ft³/s. As the valve opens, Q3 increases. At $\frac{1}{4}$ open Q3 is 0.037 ft³/s and increases to 0.066 ft³/s when it is fully open.

Analysis:

Because Le/D is much larger when the valve is closest to being shut, it lowers Q3 because it is a large number in the denominator of the equation. When the valve is fully closed it will bring Q3 to zero as seen in part A.