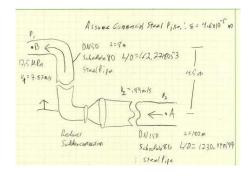
Group 1: Dave Buonconsiglio, Richard Harrell, Devon Moore, Traveon Williams,

MET 330

Dr. Ayala

November 11, 2021

HW #3.1


Devon Moore: Looking the solved series pipeline solutions I learned that Bernoulli's equation and the minor loss equations can be combined to determine what the required size of a pipe is to produce a particular flow rate. The same principal can be used to find things like flow rate, velocity, or pressure depending on the given variables. For some applications it can be easier to rearrange the equation derived from Bernoulli's and the minor losses to directly solve for the missing variable. Other applications may require the equation to be split into two halves and solve for the missing variable using an iteration process on excel. This way of solving series pipeline systems is very useful when dealing with gravity fed systems because there is no given fluid velocity.

Dave Buonconsiglio: This week we worked on iterations. I have been trying to do this for some time. This is what excel spreadsheets are made for. Once you can get the equation figured out, the solution is actually pretty easy. The tough part is figuring out where to put what. Once you have that data, then it just becomes plug and chug in a table in excel.

This weeks problems will also help greatly with our groups design for the project, as we are using gravity fed pipes for most of the system.

Richard Harrell: We learned there are there classifications of piping system analysis and design. Class 1 are completely defend with size of pipes, what loses are present and Flow rate. Used to find pressure at a point. While class 2 completely defends the location and equipment, leaving you to look for the flow rate Then finally we have class 3 is just a general design and know volumetric flow rate allowing you to size the pipes as need. We also worked with iteration "repetition of a mathematical" which is ideal for use in programs/ excel.

Traveon Williams:

MW 3,1 Problem 11.5.1 Q= 0.015 m²/s Vo3 + 22+ha PB P9 $\frac{P_4}{P_5} + \frac{V_{4^2}}{49} =$ $\frac{P_8}{P_9} + \frac{V_8^2 - V_4^2}{2_9} + \frac{Z_2 + h_4 + 2_1}{2_9}$ Pingo = E/d = 4.67155/.15= 32157, 20: 619 1-0.016 PIPEB = E/J = 4.6x10 \$ 10.05 = Garant F- 100 19 hLo = fly2 = ol6x (180) (080)?; 0.7m 2d9 2 (015) 9 01 hie - fly= - 049 > 8× (244)? - 9-84 m 209 - 28004)(9.81 hyung = 15182 = 5 (7.64)2 1.41

ha= .7+ G.04+ 1.987= 11.22 h PA - PB + VB2 - VA2 + 2 that $\frac{P_{A}}{P_{1}} = \frac{12.5 \times 10^{6}}{8.8 \times 10^{2}} + \frac{7.69^{2}}{2 \times 5.31} + \frac{4.5 + 11.22}{2 \times 5.31}$ PA = 14,39 PA= 12,7 mPA Py 8.8x1" BCT PA

11.13

960
$$\xi = 1,10 \times 10^{-3} \text{ mm} \pm 305^{-1}$$

6 in R
12 in d_{12}
13 in d_{12}
14 in d_{12}
15 in d_{12}
16 in d_{12}
17 in d_{12}
17 in d_{12}
18 in d_{12}
19 in d_{12}
19 in d_{12}
10 in $d_$

Aluminiur	new	1.50E-03	mm	4.92E-06 ft							
					Form	ulae:	$V = \frac{Q}{A}$				
	psi	2880					$v = \overline{A}$				
80	psi	11520	psf								
							$\frac{p_1}{1} + 2$	$v_1 + \frac{v_1^2}{1} - h_2$	$=\frac{p_2}{1+z_2}+\frac{1}{z_2}$	² 2	
	28.15384615						γ	2 2g	$=\frac{p_2}{\gamma}+z_2+\frac{u}{2}$	g	
hL 80 psi	167.8064516	ft									_
							$\frac{p_1}{p_1}$ +	$z_1 + \frac{v_1^2}{v_1} = \frac{p}{v_1}$	$\frac{v_2}{2} + h_1 + \frac{v_2^2}{2}$		-
g	32.2	ft/s^2				_	Y	21 2g 1	$\frac{v_2}{v} + h_L + \frac{v_2^2}{2g}$		
D pipe	0.5	in	0.041667	ft							
L	20	1000					LHS =	$\frac{p_1 - p_2}{v} - z$	2	455.2258065	
v	7.37E-06							Ŷ		2684.903226	80 p
e	1.50E-04	ft									
Y	62	lb/ft ³									
Kn	0.15	1. 1. No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.									
Dn	0.25	in	0.020833	ft							
A pipe	0.001363538	ft ²									
A nozzle	0.000340885					£ _		$\frac{0.25}{D/\varepsilon} + \frac{5.74}{Re^{0.9}}$			1
z2	18					, = <u>-</u>		5.74	$\left \right ^{2}$		
fT	2.75E-02					l	log (3.7(1	$D/\varepsilon) + Re^{0.9}$	月		
Kelbow	5.50E-01										
1/(3.7De)	9.73E-04					120	0.2	5			
D ²	0.001736111				3	$f_T = -$	0.2 $\log\left(\frac{1}{3.7}\right)$	$1 1^2$			
√gDhL/L	1.37428303	√gDhL/L	3.355148				$\log\left(\frac{3.7}{3.7}\right)$	$\overline{D/\varepsilon})$			
1.784v	1.31E-05										-
	0.057261793		0.139798				L				
1.784v/D	2.30E-04		9.41E-05		1	K _{pipe}	$= f(\frac{L}{D})$				
log	-2.91988369		-2.97183			2					-
D2√	0.002385908		0.005825		Ke	lbow	$= 20 f_T$			-	
Q	0.015465794		0.03843								
V	45.36958642		112.7348			VD					
De	2.78E+02				Re =	v					
	gDhL	, 1	1.784	v							
z = -2.22	$* D^2 \sqrt{\frac{gDh_L}{L}}$	37(D	aD	h_t							
	v	J. (E	$D_{\sqrt{1}}$								
	45.36958642										
Vb	112.7348262	ft/s									

11.20		
	Formulae	$V = \frac{Q}{A}$
		$\frac{p_1}{\gamma} + z_1 + \frac{v_1^2}{2g} - h_L = \frac{p_2}{\gamma} + z_2 + \frac{v_2^2}{2g}$
		$\frac{p_1}{\gamma} + z_1 + \frac{v_1^2}{2g} = \frac{p_2}{\gamma} + h_L + \frac{v_2^2}{2g}$
		$LHS = \frac{p_1}{\gamma} + z_1 + \frac{v_1^2}{2g}$
		$RHS = \frac{p_2}{\gamma} + h_L + \frac{v_2^2}{2g}$
		$h_{L pipe} = f\left(\frac{L}{D}\right) * \left(\frac{v^2}{2g}\right)$
		$h_{L valve} = K(\frac{v_2^2}{2g})$
		$h_{Lelbow} = 20f_T * \frac{v_1^2}{2g}$
The tank shown in the figure is to be drained to a sewer. Determine the size of new Schedule 40 steel pipe that will carry at least 400 gal/min of water @ 80°F through the system shown. The total length of pipe is 75 ft.		$f = \frac{0.25}{\left[\log\left(\frac{1}{3.7(D/\varepsilon)} + \frac{5.74}{Re^{0.9}}\right)\right]^2}$
		$f_T = \frac{0.25}{\left[\log\left(\frac{1}{3.7(D/\varepsilon)}\right)\right]^2}$
		$K_{pipe} = f(\frac{L}{D})$
Globe valve fully open		$K_{elbow} = 20f_T$ VD
Standard elbow		$Re = \frac{VD}{v}$

11.20

g	32.2	ft/s									
L	75	ft									
Y	62.2	lb/ft^2									
v	9.15E-06	ft^2/s									
p1	0	psi									
Q	400	gpm	0.8912	ft^3/2							
e	1.50E-04	ft									
LHS	12	ft									
Iteration	D (ft)	V (ft/s)	Re	D/e	fT	f	Κv	Ke	Кр	RHS	%diff
1	0.3	12.6079	4.13E+05	2.00E+03	0.0167	0.0180	5.677661	0.500970075	4.489606	11.23316584	-6.4%
2	0.4	7.091944	3.10E+05	2.67E+03	0.0157	0.0175	5.328019	0.470119292	3.284959	2.705426639	-77.5%
3	0.2	28.36778	6.20E+05	1.33E+03	0.0183	0.0190	6.231998	0.549882138	7.139397	89.38288631	644.9%
4	0.25	18.15538	4.96E+05	1.67E+03	0.0174	0.0184	5.917373	0.522121138	5.514121	28.38234525	136.5%
5	0.275	15.00444	4.51E+05	1.83E+03	0.0170	0.0181	5.790208	0.51090069	4.949013	17.45624697	45.5%
6	0.29	13.4924	4.28E+05	1.93E+03	0.0168	0.0180	5.721118	0.504804545	4.662593	13.33302498	11.1%
7	0.295	13.03891	4.20E+05	1.97E+03	0.0168	0.0180	5.699143	0.50286558	4.574437	12.22845458	1.9%
8	0.297	12.86389	4.18E+05	1.98E+03	0.0167	0.0180	5.690492	0.50210226	4.540115	11.81795874	-1.5%
9	0.296	12.95096	4.19E+05	1.97E+03	0.0167	0.0180	5.694808	0.502483058	4.55721	12.02107631	0.2%