Group 1: Dave Buonconsiglio, Richard Harrell, Devon Moore, Traveon Williams,

MET 330

Dr. Ayala

November 18, 2021

HW #3.2

Devon Moore: From the slides and lectures I learned that you must use a separate Bernoulli's equation for each branch in a parallel system. It is also important to have a good understanding of where the system is experiencing energy losses. The ft can be found using the equation if the pipe diameter and roughness are known, which it normally is. To find f you must use the iteration process. Q is also found using the iteration process in combination with the f that was found. These types of problems must be done in excel and require a lot of patients.

Dave Buonconsiglio: This week I learned a lot about how to let the computer do my work, but that there is still a lot to do to get it all set up. Once I have the aha moment, and can see where the Bernoulli's equation is leading me, I have actually found the process simple to understand, and almost enjoyable. I believe I have finally figured out Bernoulli's and I hope to do well on this weekend's test.

I was told in my Circuits class that the series and parallel flow was almost identical, but I had a hard time picturing that until this week and the review of the parallel branches. I can finally understand why you enjoy this subject so much, these calculations, while time-consuming, are quite satisfying to solve, almost, but not quite, fun, dare I say?

Richard Harrell:

Traveon Williams:

11.23

101						Pr	oblem 11.23					
							Given					
	1					C	ass 1 system					
Pump 20 col/m	Z (Z2	-Z1)	Sp. Ga	/. Of Fluid	dy. Viscosoty	Gravity	diamotor	2in Schedule 40 (s) Loogth	1.25in Sch	edule 40 (d)	Steel Roughness (€)
50 gai/m	an Troit			0.92	3.6*10^-5 lb-s/ft^2	32 19 ft/s^2	0.1723 ft	0.02333 ft^2	20 ft	0.115 ft	0.01039 ft^2	4.6*10^-5
<u> </u>					lote an o to drive	SERIES THE E	01474011		2010	0.000		1.0 20 0
9					2	Equaions / Ca	lculations					
	Energy B	Equat	tion	$\frac{p_1}{2} + z_1 $	$\frac{v_1^2}{2} + h_A - h_I = \frac{p}{2}$	$\frac{2}{2} + z_2 + \frac{v_2^2}{2}$						
3		0.000		Y	2g 2g 1	- 2g						
	Bec	ause		$p_1 = p_2$	$= 0 \otimes v_1 = v_2 = 0$							
1				$n_A = z_2$	$-z_1 + n_L$							
			-	$n_L = n_1$	$n_1 + n_3 + n_4 + n_5$	+ n ₆						
				$h_1 = k(\cdot$	$\left(\frac{v_s}{c}\right)(entrance)$							
8				30 agl	1 min 0.134 ft ³	ft ³						
10	Conve	ersion	n	min	60 sec 1 gal	= 0.0668 <u>sec</u>						
				Q	0.0668 6 42	ťt						
				$v_s = \overline{A_s}$	$=\frac{1}{0.01039}=0.43$	5						
				vs 6.	432 = 0.64ft	83						
				2g 2(32.19							
				k=.5 assur	ning square-edged in	let						
				$h_1 = k$	$\left(\frac{v_s^2}{2}\right) = .5(0.64) =$	0.32m						
	Malasi				(2g)	8796878375 						
	veloci	tion	au	$h_2 = f_2 - \frac{1}{r}$	* 2.							
	500	uon	- 1	D	286(01723)	92						
				$N_R = \frac{v_D}{n}$	$\frac{p}{2.00(0.1720)} = \frac{2.00(0.1720)}{3.6 \times 10^{\circ}}$	$\frac{52}{5} = 12,593 > 4$	1000 = Tur	bulrnt Flow				
			1	D	0.115	5						
				$\overline{e} = \overline{4.6}$	* 10^ - 5 = 2500							
			- 1	$f_s = mo$	pdy = 0.03							
			1	h f	$\frac{l}{v_s^2} = 0.03 - \frac{10}{10}$	0 127 - 0.03	1.64					
				$n_2 = j_s$	$D^{-}2g^{-}0.03^{-}0.1$	15 0.127 = 0.03						
1				$h_3 = f_{dT}$	Le * V2							
			-		D 2g							
				$\frac{L_e}{T} = 10$	0 (table 10.4 for	swingcheck val	re)					
			- 1	D = 0.1	1 (table 105 for	1.25(m)						
			- 1	$\frac{1}{Q} = 0.1$	0.0668	ft						
				$v_d = \frac{1}{A_d}$	$=\frac{1}{0.02333}=2.86$	s						
				v_{4}^{2} 2	86 ²							
	Malast		3	$\frac{d}{2g} = \frac{1}{2(2)}$	$\overline{32.19} = 0.127 ft$							
	Disc	nt Hea		$h_{2} = f_{12}$	$\frac{L_{g}}{L_{g}} * \frac{v_{g}^{2}}{v_{g}} = 0.21(1)$	(0)(0)(127) = 2.66	7ft					
	Disci	laige		ng -) ai	D 2g	00/0127 - 2100						
				$h_4 = Elb$	ows in discharge	= 0						
				$h_5 = f_d$	$\frac{L}{r} \frac{v_s}{v_s}$							
				f = 0.01	D 2g	2 (m)						
			-	$I_d = 0.01$	19 (lable 10.5 / 07)	cin)						
				$h_{\rm S} = f_d \frac{1}{1}$	$\frac{v_s}{2c} = 0.019 \frac{20}{0.17}$	$\frac{1}{23}0.127 = 2.33j$	ft					
					2 0.17	2.5						
				$h_6 = 1 \frac{v_6}{2}$	$\frac{1}{a} = 1 * 0.127 = 0.1$.27ft						
1			-	$h_L = h_1$	$+h_1 + h_3 + h_4 + h_5$	$+ h_6 = 0.32 + 0.$	034 + 2.667	7 + 0 + 2.33 +	- 0.127 =	5.478ft	-	
		*10	1	$h_A = z_2$	$-z_1 + h_L = 18 + 5$	6.478 = 23.478ft	$= h_A$					
	Solu	uons	8 - F	Power($P_A) = h_A W = h_A \gamma Q$	$= 23.478 + \rho g$	+ 0.0668 =	23.54 + .92(6)	2.4) = 80	89Kw = 0.1	69 hp	
				ð	= Power(P)	4)					1	

$$\begin{split} & \eta = 0.5 \frac{40}{9700} + \zeta \frac{1}{D} \frac{40^{n}}{9700} + 30\zeta_{T} \frac{30^{n}}{9400} + 20\zeta_{T} \frac{30^{n}}{9400} + 20\zeta_{T} \frac{30^{n}}{9400} \\ & \zeta = \frac{0.25}{R_{10}} \frac{1}{(3100\epsilon)} + \frac{5299}{R_{10}} \frac{2}{(3100\epsilon)^{2}} \\ & \zeta = \frac{0.25}{R_{10}} \frac{1}{(3100\epsilon)} + \frac{0.25}{R_{10}} \frac{1}{(3100\epsilon)^{2}} \frac{1}{(3574)} \\ & \zeta = \frac{0.3574}{(23100\epsilon)^{2}} + \frac{0.25}{R_{10}} \frac{1}{(3100\epsilon)^{2}} \frac{1}{(3176)} \frac{1}{(31$$

Duran El ave	20		0.00000	631-		
Pump Flow	30	gpm	0.06684	π /s		
Coolant sg	0.92	γ	57.408	ib/π		
Dynamic Visc ŋ	3.60E-05	lb*s/ft				
Coolant p	1.7848	slug/ft	57.4242	lb/ft ⁻		
Steel Pipe e	1.50E-04	ft				
Pipe Length	34	π				
KEIDOW	30	TT				
K Tee (through)	20	f _T				
Tanks vented, th	erefore P=0	psig				
p1 v1 .	, p 2	v_{2}^{2}				
$\frac{1}{\gamma} + z_1 + \frac{1}{2g} - h_1$	$h_A = \frac{1}{\gamma}$	$+ z_2 + 2g$				
$z_2 = h_L$	Z ₂	4	ft			
	v ²	assume	souare K	-0.5	$V = \frac{Q}{4}$	
$h_{L entrance} = h$	$K(\frac{v}{2g})$	assume	Square, K	-0.5	A	
					$V = \frac{Q}{Q}$	$=\frac{4Q}{2}$
$h_{Lpipe} = f \frac{D}{D} \left(\frac{e}{2g} \right)$)				$\frac{\pi D}{4}$	² πD ²
$h_{1,2} = K(\frac{v^2}{2})$	K=30 f _T					16Q ²
					$\frac{v^2}{2a} = \frac{1}{2a}$	$\frac{\pi^2 D^4}{2a} = \frac{8Q^2}{a\pi^2 D^4}$
$h_{l,tee} = K(\frac{v^2}{2})$	K=20 f _T				-0	
2100 (2g)					- <u>4</u>	$Q_{D*\rho}$
	0.25				Re = <u>n1</u>	n
$f = \frac{1}{\Gamma}$	1 55	$(4)1^2$				
$\log\left(\frac{3.7}{3.7}\right)$	$\frac{1}{(D/\varepsilon)} + \frac{3.7}{Re}$, ,			$Re = \frac{4Q}{2}$	η _{1.748}
×					πι)
$f_T = \frac{0}{1 - 1}$.25				<mark>4</mark> Qη	9.63E-06
$\left[\log\left(\frac{1}{3.3}\right)\right]$	$\frac{1}{T(D/\varepsilon)}$				4Qη*1.74	1.68E-05
UD-					1.0	58 <i>E</i> – 5
VDD	- 1				Re =	

$LHS = z_1$	2	1						LHS = z	2 4							$LHS = z_2$	4						
RH	$S = 0.5 \frac{8}{g_7}$	$\frac{3Q^2}{\tau^2 D^4} + f \frac{1}{L}$	$\frac{8Q^2}{g\pi^2 D^4} +$	$30 f_T \frac{8Q^2}{g\pi^2 D}$	$\frac{1}{4} + 20f_T \frac{1}{2}$	$\frac{8Q^2}{9\pi^2 D^4}$		RH	$S = 0.5 \frac{8}{g\pi}$	$\frac{Q^2}{^2D^4} + f\frac{L}{D}$	$\frac{8Q^2}{g\pi^2 D^4} + $	$30f_T \frac{8Q^2}{g\pi^2 D}$	$\frac{1}{10^4} + 20f_T \frac{1}{2}$	$\frac{8Q^2}{g\pi^2 D^4}$		RHS	$f = f \frac{L}{D} \frac{8}{g\pi}$	$\frac{Q^2}{2D^4}$ + 60	$f_T \frac{8Q^2}{g\pi^2 D^4}$				
8Q ² gπ ² L	0.03574 317.80	9 1 9						Q 8Q ² g ² L	0.04456 0.01588 317.801 4							Q 8Q ² gπ ² L	0.02228 0.00397 317.801 2						
Iteration	D ft 0.2	Re 5 2.1E-09	f 5 1.02E-02	f _T 2 3.55E-02 2 36E-02	V 0.02879	RHS 0.10557	% Diff -97%	Iteration	n D ft	Re 2 1F-05	f	fT 0.0355	V 0.02879	RHS 0 10557	% Diff -97%	Iteration	D ft	Re 4 95-05	f 0.01171	fT 0.04738	V 0.75814	RHS 4 9628	% Diff 24%
3	0.0	5 1.1E-00 5 0.0001 1 5.4E-0	5 0.00669 1 0.01344 5 0.0119	9 1.60E-02 6.54E-02 9 4.91E-02	1.8E-07 17.9941 1.12463	2.4E-07 232.308 7.87418	-100% 5708% 97%	3	2 1 3 5 4 0.05	5.4E-06 1.1E-06 0.00011	0.00831 0.00669 0.01344	0.02359 0.01599 0.06543	0.00011 1.8E-07 17.9941	0.00022 2.4E-07 232.308	-100% -100% 5708%	2	0.12	4.5E-05 4.7E-05	0.01154	0.04586	0.54236	3.26484 4.00624	-18%
6	0.1	5 3.6E-03 1 4.9E-03 5 4.7E-03	5 0.01111 5 0.01171 5 0.01162	4.23E-02 4.74E-02 4.66E-02	0.22215 0.76814 0.64301	1.14031 4.98294 4.02815	-71% 25% 1%	6	5 0.1 5 0.15 7 0.11	5.4E-05 3.6E-05 4.9E-05	0.0119 0.01111 0.01171	0.04913 0.04228 0.04738	1.12463 0.22215 0.76814	7.87418 1.14031 4.98294	97% -71% 25%								
10 11 12	0.114	4 4.7E-03 4.6E-03 4.6E-03 4.6E-03 4.6E-03 4.6E-03 4.6E-03	5 0.01164 5 0.01161 5 0.01161 5 0.01161	4.67E-02 4.64E-02 4.65E-02 4.65E-02	0.62112 0.63195 0.63414	4.19992 3.86488 3.94549 3.96185	-3% -1% -1%	10	0.115	4.6E-05 4.6E-05	0.01162 0.01161 0.01161	0.04659 0.04652 0.04656	0.63195	4.02815 3.94549 3.99484	-1% -1% 0%								
13	0.115	4.6E-0	5 0.01161	4.65E-02	0.63856	3.99484	0%																
Main pi	oe should	d be 1 1/4	in Schedu	ile 40 Stee				Pipe bet	tween pur	nps shoul	d be 1 1/4	in Sched	ule 40 ste	el pipe		Pipe to p	ump #2 si	hould be	1 1/4 in Sc	hedule 40) steel pi	pe	

Q	0.04456						
8Q ²	0.01588						
gπ ²	317.801						
L	1						
2							
Iteration	D ft	Re	f	fT	V	RHS	% Diff
1	0.11	4.9E-05	0.01171	0.04738	0.76814	3.871	-39
2	0.1	5.4E-05	0.0119	0.04913	1.12463	6.20673	559
3	0.105	5.1E-05	0.0118	0.04822	0.92524	4.87332	229
4	0.1075	5E-05	0.01175	0.04779	0.84213	4.33735	89
5	0.108	5E-05	0.01174	0.04771	0.82664	4.23887	69
6	0.109	4.9E-05	0.01172	0.04754	0.79672	4.04989	19
7	0.1095	4.9E-05	0.01171	0.04746	0.78227	3.95923	- 1 9
8	0.10925	4.9E-05	0.01172	0.0475	0.78945	4.00425	09

teration	1						
	Guess Q2	V2 (m/s)	Re2	f2	deltaP /gamma		
	(m3/s) 0.007	0.85164	6.70E+04	0.0779	(m) 0.24		
		f3	Q3 (m3/s	V3 (m/s)	Re3	f3	%diff
		0.01	0.007	0.85164	6.70E+04	0.0779	-679.044
		0.0779	0.007	0.85164	6.70E+04	0.0779	0
	Guess		-				
	Q2	%diff					
	0.00633	9.52381					
Iteration	2		-				
iteration	Guess				deltaD		
	Q2 (m3/s)	V2 (m/s)	Re2	f2	/gamma (m)		
	0.00633	0.77053	6.06E+04	0.0779	0.20		
		f3	Q3 (m3/s	V3 (m/s)	Re3	f3	%diff
		0.01	0.00633	0.77053	6.06E+04	0.0779	-67905%
		0.0779	0.00633	0.77053	6.06E+04	0.0779	0%
		0.0779	0.00633	0.77053	6.06E+04	0.0779	0%
		0.0779	0.00633	0.77053	6.06E+04	0.0779	0%
		0.0779	0.00633	0.77053	6.06E+04	0.0779	0%
	Guess Q2	%diff					
	0.007	-10.5263					
Iteration	3						
	Guess Q2 (m3/s)	V2 (m/s)	Re2	f2	deltaP /gamma (m)		
	0.007	0.85164	6.70E+04	0.0779	0.24		
			-				
		f3	Q3 (m3/s	V3 (m/s)	Re3	f3	%diff
	-	0.01	0.007	0.85164	6.70E+04	0.0779	-67904%
	-	0.0779	0.007	0.85164	6.70E+04	0.0779	0%
		0.0779	0.007	0.85164	6.70E+04	0.0779	0%
	Guess Q2	%diff					
	0.00633	9.52381					

Iteration	4							
Iteration	4				1.1.0			
	Guess				deltaP			
	Q2	V2 (m/s)	Re2	f2	/gamma			
	(m3/s)				(m)			
	0.00633	0.77053	6.06E+04	0.0779	0.20			_
		f3	03 (m3/s	V3 (m/s)	De3	f3	%diff	
		0.01	0.00633	0 77052	6 06E+04	0.0770	-67005%	-
		0.0770	0.00033	0.77053	6.06E+04	0.0770	0750576	-
		0.0775	0.00033	0.77055	0.001+04	0.0775	076	
	Guess	%diff						
	Q2							
	0.007	-10.5263						_
	-							_
Iteration	5							
	Guess				deltaP			
	Q2	V2 (m/s)	Re2	f2	/gamma			
	(m3/s)	100			(m)			
	0.007	0.85164	6.70E+04	0.0779	0.24			
	_	f3	Q3 (m3/s	V3 (m/s)	Re3	f3	%diff	
		0.01	0.00633	0.77053	6.06E+04	0.0779	-67905%	
		0.0779	0.00633	0.77053	6.06E+04	0.0779	0%	
	Guess					10	1	
	O A	%diff						
	(m3/s)							
	0.007	0						
					1			
								_
Q_T=Q_A+Q_B	0.00633							
delta_P	2.34112	kPa						
			-					

12.5

	Standard					
Q	500	L/m	0.008333	m³/s		
100 mm O	D Pipe		50 mm OD	Pipe		
0.093	m	ID	0.047	m	ID	
6.79E-03	m²	Area	1.74E-03	m ²	Area	
1.40E-07		D/e	3.13E+04		D/€	
160 mm O	D Pipe					
0.149	m	ID				
1.74E-02	m²	Area				
9.93E+04		D/e				
W	/ater @ 10	°C				
Y	9.81	kN/m ³				
ρ	1000	kg/m³				
η η	1.30E-03	Pa*s				
v	1.30E-06	m²/s				
e	1.50E-06	m				
$Q_b =$	$A_b v_b$					
$v_b = \frac{Q_b}{Q_b}$	4.803074	m/s				
• A _b						
$h_{L1-2} =$	$h_a = h_b$					
$h_b = f \frac{L}{D}$	10.08624	m				
VD						
$Re = \frac{1}{v}$						
Re	1.74E+05					

f -		0.25	
) –	$\left[\log\left(\frac{1}{3.7(L)}\right)\right]$	$\frac{1}{D/\varepsilon} + \frac{5}{R}$	$\left[\frac{.74}{e^{0.9}}\right]^2$
fb	0.015802		
$h_a = f \frac{L}{L}$	$\frac{1}{2} + K_{valve}$		
Q _a =	$= A_a v_a$		
$v_a = \frac{Q_a}{A_a}$	1.226753	m/s	
$h_a = f \frac{L}{D}$			
$Re = \frac{VD}{v}$			
Re	8.78E+04		
<i>f</i> =	$\left[\log\left(\frac{1}{3.7(L)}\right)\right]$	$\frac{0.25}{2(\epsilon)} + \frac{5}{R}$	$\left[\frac{.74}{e^{0.9}}\right]^2$
fa	0.018154	.,., .,	- /]

Iteration	К	RHS	%Diff	
1	30	35.85627	255%	
2	20	25.85627	156%	
3	10	15.85627	57%	
4	5	10.85627	8%	
5	2.5	8.356267	-17%	
6	3	8.856267	-12%	
7	4	9.856267	-2%	
8	4.5	10.35627	3%	
9	4.25	10.10627	0%	
K valve	4.25			

	17	1	12 C	¥			12
а	Both valve	es open		Q	0.8575	ft³/s	
b	Valve in b	ranch 2 on	ly open	Q	0.37	ft³/s	
с	Valve in b	ranch 1 on	ly open	Q	0.4875	ft³/s	
W	Vater @ 60°	°F					
Ŷ	62.4	lb/ft ³					
Steel Pipe	e	1.50E-04	ft				
Elbow K	0.9						
D12in	Schedule 4	10 Pipe	D14 in	Schedul	le 40 Pipe		
0.1723	ft	ID	0.3355	ft	ID		
0.02333	ft ²	Area	0.0884	ft ²	Area		
5		K valve	10		K valve		
Pa	20	psig	2880	lb/ft ²			
Pb	0	psig	0	lb/ft ²			
$\frac{p_1}{\gamma} + z_j$	$1 + \frac{v_1^2}{2g} - h_1$	$L = \frac{p_2}{\gamma} + z$	$v_2 + \frac{v_2^2}{2g}$				
$\frac{P_a}{\gamma} = h_L$							
D1			6				
$h_L = 2$	$\left(K\left(\frac{v_1^2}{2g}\right)\right)$	$+K\frac{v_1^2}{2g}$				6 6 6	
$V = \frac{Q}{A}$							

2	5	4	5	0
$V = \frac{Q}{\pi D^2}$	$\frac{1}{2} = \frac{4Q}{\pi D^2}$			
4				
$\frac{v^2}{2g} = \frac{1}{2}$	$\frac{16Q^2}{\tau^2 D^4}}{2g} = \frac{8}{g\pi}$	$\frac{Q^2}{^2D^4}$		
$h_{L} = 2$	$2\left(0.9\frac{8Q^2}{g\pi^2 D}\right)$	$\left(\frac{1}{g^2}\right) + 5\frac{8}{g\pi}$	$\frac{Q^2}{2D^2}$	
h _L =	$=\frac{14.4Q^2}{g\pi^2 D^4}+$	$\frac{40Q^2}{g\pi^2 D^4}$		
gπ ² D ⁴	0.280089			
14. <mark>4+4</mark> 0	54.4			
$h_L = \frac{1}{0}$	54.4Q ² .280089			
$\frac{P_a}{\gamma} = \frac{\frac{ll}{ft}}{\frac{ll}{ft}}$	$\frac{\frac{b}{2}}{\frac{b}{3}} = \frac{lb}{ft^2} \frac{ft}{lb}$	$\frac{3}{2} = ft$	46.15385	ft
D2				
$h_L = 2$	$\left(K\left(\frac{v_1^2}{2g}\right)\right) +$	$+K\frac{v_1^2}{2g}$		
$V = \frac{Q}{A}$				
$V = \frac{Q}{\frac{\pi D^2}{4}}$	$\frac{1}{2} = \frac{4Q}{\pi D^2}$			
2	16Q ²	02		

h _L =	$= \frac{14.4Q^2}{g\pi^2 D^4} + \frac{14.4Q^2}{g\pi^2 D^$	$\frac{80Q^2}{g\pi^2 D^4}$			
gπ ² D ⁴	4.026482				
14.4+80	94.4				
$h_L = \frac{1}{4}$	94.4Q ² .026482				
$\frac{P_a}{\gamma} = \frac{\frac{ll}{ft}}{\frac{ll}{ft}}$	$\frac{\frac{b}{t^2}}{\frac{b}{t^3}} = \frac{lb}{ft^2} \frac{ft}{lb}$	$\frac{3}{5} = ft$	46.15385	ft	

D1							
LHS	46.15385						
				D2			
Iteration	Q ft ³ /s	RHS	% Diff				
1	5	4855.592	10420%	LHS	46.15385		
2	1	194.2237	321%		1000		
3	0.5	48.55592	5%	Iteration	Q ft ³ /s	RHS	% Diff
4	0.25	12.13898	-74%	1	5	8425.88	18156%
5	0.4	31.07579	-33%	2	1	337.0352	630%
6	0.45	39.33029	-15%	3	0.5	84.2588	83%
7	0.425	35.08165	-24%	4	0.25	21.0647	-54%
8	0.475	43.82172	-5%	5	0.3	30.33317	-34%
9	0.48	44.74914	-3%	6	0.4	53.92563	17%
10	0.49	46.6331	1%	7	0.35	41.28681	-11%
11	0.485	45.68626	-1%	8	0.375	47.39558	3%
12	0.4875	46.15847	0%	9	0.37	46.14012	0%