## **Design Considerations**

- Inlet of tank had negligible height
- Whole Discharge pipe (pipe-elbows-valve system)
- System in equilibrium (Force = 0)

## **Data and Variables**

| Volumetric Flow Rate        | $Q = 5.081 \text{ ft}^3/\text{s}$                                                  |
|-----------------------------|------------------------------------------------------------------------------------|
| Velocity                    | V = 14.6  ft/s                                                                     |
| Change in Pressure          | $\Delta P$                                                                         |
| Density of Water            | $\rho_{w} = 62.4 \text{ lb/ft}^{3}$                                                |
| Area                        | A= 0.3472 ft <sup>2</sup>                                                          |
| Gravity                     | $g = 32.2 \text{ ft/s}^2$                                                          |
| Pump Head                   | hA= 260 ft                                                                         |
| Energy loss due to friction | $hL = h_{L_{sution}} + 3 \cdot h_{L_{elbows}} + h_{L_{valve}} + h_{L_{disrchage}}$ |
| Reynolds Number             | Re= 802397                                                                         |
| Friction Factor             | f= 0.0152                                                                          |
| Friction Coefficient        | fT= 0.014                                                                          |
| Length Suction              | 11 ft                                                                              |
| Length Discharge            | 2500 ft                                                                            |

## Procedure

1. First I made a FBD of the forces and reaction acting on the pipe and wrote out Bernuolli's

equation.

- Then I calculated the new hL with the appropriate fittings and valve losses and calculated
  P3 using Bernoulli's.
- 3. Using our P3, I derived the equations from Newton's first law to get Rx and Ry.

## Calculations

