Small Engineer	ng Project: Mel Cruz, Tai	Booker, Chris E	Betton									
Data and Variable	S	Step 1:	Finding Diameter		Step 2:	Compute pump head	Step 3:	Select Pump	S	Step 4:	Specify Electric Motor	
Tavg	42.5 F		V-crit = 3 m/s	9.845 ft/sec		/	Required Data:				D	
viscosity (kinema	0.00002505 ft^2/sec				$h_A + \frac{p_1}{4} + \frac{V_1^2}{2\pi}$	$+Z_1 = \frac{p_2}{h_1} + \frac{V_2}{2h_1} + Z_2 + h_{k,12}$	hA	104.3119198		$P_A = \gamma Q h_A$	$P_{input} = \frac{P_A}{T}$	$=\frac{\gamma Q n_A}{\gamma Q n_A}$
gamma	58.656 lb/ft^3	suo	Q=15,000gal/6 hours).09283371269 ft^3/sec		γ 2g	Q 0.09283371269 ft^3/sec		t^3/sec		η	η
z1	16 ft	lati	d=sqrt(4Q/piV)	0.1095721186 ft			Q (gal/min)	41.66666239				
v1	0	alcu	approx.	1.314865423 in					P	PA	568.0049245	i
gravity	32.2 ft/sec^2	ö			hA	104.3119198	3		e	fficiency	28%	
p2	0	Therefore we will be 1.5 in	decided that the discharge NPS schedule 40	e piping			Based on the S we selected th	ulzer Technical Data e:	P	Pinput (ft-lb/sec)	2028.589016	;
z2	36.42 ft	The suction p	iping will be 2 in NPS sche	dule 40	hL=(3)h1+(4)h2+(6)h3+(2)h4+(2)h5+h6+(3)h7+h8+h9+h10	1 x 3 x 11.5 -1 (OHH Centrifugal Purr	np P	Pin (Hp)	3.651460229	
v2	0	F					Impeller size:	290 mm				
Lsuct	721 ft	Γ	Diameter (suction)	0.1723 ft	h1= entrance loss	ses to tanks						
Ldisch	402 ft	diy	Diameter (discharge)	0.1343 ft								
Relative Roughn	0.00015 ft	oper	Velocity (suction)	3.981486828 ft/sec	h2 = gate valve lo	sses (suction)	Step 5:	Evaluate NPSH	S	Step 6:	Cavitation Evaluation	
D/E(suct)	1148.666667 ft/ft	Al Se	Velocity (discharge)	6.553356783 ft/sec			NPSH = hsp+h	shf-hvp				
D/E(disch)	895.3333333 ft/ft				h3 = 90 degree el	bows (suction)			N	NPSH req	4.5ft	from Sulzer
Re (suct)	27385.63594 ft/ft						1 1		N	NPSH act	46 ft	
Re (disch)	35134.36391 ft/ft	Compute frict	ion factor and fT		h4 = check valve	h3 = 90 degree elbows (suction) h4 = check valve losses (suction) h5 = exit losses from tanks (suction) h6 = gate valve losses (discharge) h7 = 90 degree elbow losses (discharge)		$=\frac{p_2}{\gamma}+\frac{V_2^2}{2\alpha}+Z_2+h_{L12}$			Since NPSHact > 1.10 N	PSHreq
L suct	721 ft						y 29	γ 2 <i>y</i>			No caviation	
L disch	402 ft				h5 = exit losses fr	om tanks (suction)	$P_{2} = (V_{2})$	$\frac{2}{2} = \frac{2}{2} = \frac{1}{2} = \frac{1}$	2) *V			
Volume Railcar	15000 gal						F 2 = (V 2)	/2g - 22 - m1 -	2) 8			
viscosity (dynami	0.00004845 lb-s/ft^2	6	0.25		h6 = gate valve lo	sses (discharge)						
hvp (water)	19.3 lb/ft^2	$f = \frac{1}{5.74}$		22			hL=h5+h3(2)+h	2+fL/D*V^2/2g				
		log	$\overline{3.7 (D/\varepsilon)} + \overline{N_R^{0.9}}$		h7 = 90 degree el	bow losses (discharge)	hL=	0.8624207865 ft	t			
		f suct	0.02622618111		h8 = check valve	losses (discharge)	k5	1				
		f disch	0.02576299522				k3*2	1.139362606				
					h9 = major frictio	h9 = major friction losses (suction)		0.1519150141				
		f	0.25				fL/D	1.21232237				
		$J_T = \frac{1}{\Gamma}$	$(1)^{2}$		h10 = major fricti	on losses (discharge)	P2/gamma	-37.03626803 lt	b/ft^2			
			$\log\left(\frac{1}{37(D/s)}\right)$				P2 (psi)	-0.2571963058				
		L	(5.7(D/c))		v^2/2g (suction)	0.246152754	NPSH=	-45.6802916				
		fT suct	0.01898937676	i	v^2/2g (discharge	0.666870887	hsp	-37.03626803				
		fT disch	0.02017477352	2			hs	-10				
					k1*3	1.5	5 hf	0.8624207865				
					k2=8fT*4	0.6076600565	5 hvp	0.4935556465				
					k3=30fT*6	3.418087818	3					
					k4=100fT*2	3.797875353	3					
					k5*2	2	2					
					k6=8fT	0.1613981881	1					
					k7=30fT*3	1.815729617	,					
					k8=100fT	2.017477352	2					
					k9=fL/D	109.7450759	•					
					k10=fL/D	77.11633714	+					
					$hL = V^2/2g (suct) * (k1)$	$+k2+k3+k4+k5+k9) + V^2/2g (disch) * (k6+k7+k8+k10)$						
					IUL	83.89191975						

Suction				
Quantity	Nomenclature			
6	90 degree elbow	S		
4	2 inch rising stem	n gate valves		
2	2 inch swing che	ck valve		
3	entrance connect	tions		
2	exit connections			
Discharge				
Quantity	Nomenclature			
1	1.5 inch gate valv	ve		
3	90 degree elbow	s		
1	1.5 inch swing ch	neck valve		
1	exit connection			
Tanks				
Quantity	Nomenclature			
1	15,000 gal Rail T	ank car		
1	Clean coolant sto	orage tank		
1	1,000 gal Reserv	oir (input/output n	nachining system)	1
1	Dirty coolant tank	K		
Pipes				
Appendix F.1				
2 inch Schedule	40 Steel (suction)			
1 1/2 inch Sched	ule 40 Steel (discl	harge)		
Pump				
1 x 3 x 11.5-1 O	HH Centrifugal Pu	Imp		
Impeller size:	290 mm			
Weight (kg)	237			

Kinetic vs Positive Displacement Pump							
A Kinetic pump is being used because the facility is	not moving a large	e flow of fluid very	v quickly.				
We are given a timeframe of no less than 6 hours							
Kinetic pumps work by tranferring kinetic energy from	n an impeller, to th	ne fluid as it move	es into and throug	h the pump.			
The Radial (centrifugal pump) is the type of kinetic p	ump being used d	lue to its ease of	serviceablity				
and ease of disassembly without disturbing the suct	ion and/or dischar	ge piping.					
A benefit from using the centrifugal pump is that flow	<i>i</i> rate can be mani	pulated whereas,	positive displace	ment has a fixed f	low rate.		
Positive Displacement pumps are used for high-pres	sure applications	requiring a relativ	ely constant deliv	ery in which this i	s not the case for	the manufacturing	J facility design.
Positive displacement pumps tend to pulsate at its c	utput and are suse	eptible to damage	e by solids.				
There is also a need for a relief valve.							
Positive displacement pumps work by ideally deliver	ing a fixed quantit	y of fluid with eac	h revolution of the	e pump rotor or dr	ve shaft.		

eam 1, chris Betton, Tai Booker, Mel Cruz-Contee Find Diameter · Verit = 3 = 9.845 fee Q= 15.000 pai 1 hour 1 ft3 · Verit = 3 = 9.845 fee Q= 6 hours 3600 see 7.48052 gal = 0.09283 see $A = \frac{2}{4} A = \frac{2}{4} d^{2}$ $4 = \frac{1}{4} (0.09283) = 0.1095 ft - 12in = 1.3148 in ~ 1.010 in = 1.2178$ JTC. 9.845 141 0.1342FF=P In preparation to use small pipe for pump discharge, we have decided to use: Suction: 2" NPS, D=0.1723 Ft, A= 0.02333 Ft, Disch: 1. Jin= Also in order to maintain '6 hour transfer time the pump rpm will be slowed. omputer + z, + 70 +hA-hL= \$ +Z2+ Y2 . hA= Z2-Z, +hL Vent Olarge Olarge atmosphere tank tank h_= h(3)+ h2(4) + h3(6)+ hy(2)+ hs(2)+ h6 +3)h2 + h8 + hq + h10 $h_1 = entrance losses = k(\frac{v}{2g}), k = 0.5, v = 0.68598 scc$ $h_{2} = gate value losses = k(\frac{v^{2}}{zg}), k = 8f_{T},$ $h_{3} = 90^{\circ} elbow losses = k(\frac{v^{2}}{zg}), k = 30f_{T},$ $h_{4} = check value losses = k(\frac{v^{2}}{zg}), k = 100f_{T}$ sut. hs= exit losses = h,=1,0(2g) hy = 1.5" gate volve losses (disch) = K zg; k = 8ft hz = 90° 1.5" losses (discharge) = K zg; k=30ft hz = check valve 1.5" (discharge) = K zz 1 100ft disch ha= suction pipe losses = f D zg D= 0.1723Ft ha= discharge pipe losses = f D zg D= 0.1723Ft major major his = discharge gipe losses = -> Velocities $V_{suct} = G4 = 0.09283 Ft 4.1 3.9815 ft 3.9$

Evaluate NPSH TO Dirty 1 Tank P,= Ø because the tank is vented to atmosphere for maintenance (discharge pumping). 10ft Pump V2 + Z3 + h2+2 29

Power

$$P = \gamma Q h A = 568.0 \frac{b-f+}{sec}$$

Badial flow (Centrifugal) Kinetic pump. Kinetic pumps are less expensive than positive displacement pumps. Kinetic pumps are also smaller, making them easier to implement in systems Unere the pump is located underground or in hard to access areas. Dealing with Fluid systems with small Q and low viscosity is better with kinetic pumps, kinetic pumps allow you to work with a range of flow rates. When getting water from underground, multiple impellers on a contribugal pump aid in this effort. Furthermore, radial flow is used when moving fluid to an elevated tank. A small speed (NS) is needed for radial pumps. We consider <4000 Ns is to be a slow speed. $N_{5} = \frac{N_{5} \sqrt{3}}{1} = \frac{3}{37} \sqrt{42} = 1520$

op Wew

TEC Mechanical	SULZER TECHNICAL DATA - TYPE OHH Mechanical Dimensions & Ratings – ISO Units							
OHH TECHNICAL DATA	ISO	8x8x10-1	8x8x10-2	1x3x11.5-1	1.5x3x11.5-1	2x4x11.5-1	3x4x11.5-1	3x4x11.5-2
Max/Min Impeller Dia. (mm)		259/206	259/206	290/231	292/234	292/234	292/234	292/234
Volute Construction		Double	Double	Single	Single	Single	Single	Single
Max Operating Pressure (Barg)		51.0	51.0	51.0	51.0	51.0	51.0	51.0
Hydrostatic Test Pressure (Barg)	6	76.5	76.5	76.5	76.5	76.5	76.5	76.5
Max Operating Temperature (° C)		Refer to seri	es B11-B16 fc	or max pump	operating terr	peratures for	each materia	al class
Size of Casing Drain Construction N	PT	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Bearing Housing No.	1.5	4.1	4.1	4.1	4.1	4.1	4.1	4.1
Shaft Dia. between bearings (mm)		78	78	78	78	78	78	78
Span between bearings (mm)	11	212	212	212	212	212	212	212
Span CL Rad Brg to CL Imp (mm)		326	326	272	273	275	276	276
Shaft Dia. at Seal Chamber (mm)		58	58	58	58	58	58	58
Shaft Dia. at coupling (mm)		42	42	42	42	42	42	42
Typical API Baseplate #	7	4.0	4.0	3.5	3.5	3.5	3.5	3.5
Radial Bearing Number		6214	6214	6214	6214	6214	6214	6214
Thrust Bearing Number		7313	7313	7313	7313	7313	7313	7313
Pump Weight (kg)		362	362	233	237	245	249	249
Typical API Baseplate weight (kg)	7	541	541	500	500	500	500	500
Minimum Case Thickness (mm)	a	Refer to series B40-B41						1 10
Max Dia Spherical Solids (mm)	3	12	12	3	6	10	13	13
Wear Ring Diameter - Eve (mm)		200	215	115	115	130	140	155
Wear Ring Diameter - Hub (mm)	5	165	165	115	115	130	140	155
Clearance Below 260°C - Eve (mm)	1	0.50	0.50	0.40	0.40	0.43	0.43	0.45
Clearance Below 260°C - Hub (mm)	1	0.45	0.45	0.40	0.40	0.43	0.43	0.45
Mass Moment of Inertia (kom2) WR	2 :	0.15	0.15	0.10	0.10	0.11	0.10	0.10
Shaft Stiffness Factor 1 3/D4		3.06	3.06	1.78	1.80	1.84	1.86	1.80
Critical Speed (Drv) (cnm)		5753	5753	11697	11163	10376	10605	10605
Temporatura Limita (%C)		Refer to se	ries B42 for	recommend	led pump			

and bearing features required for elevated temperatures

>

Use 1×3×11.5

0

USGPMJ

