
Lab 3

Task 1: Running Shellcode

Here we check if we can run call_shellcode and invoke a shell. I am successful in invoking the shell and

checking who it is. In this shell, we are still seed and do not have any root privileges in the shell.

Task 2: Exploiting the Vulnerability

For task 2 I was able to complete the exploit.c file with the correct addresses and code in order to

generate the bad_file to exploit the stack file and invoke the root shell. Before, we set the address

randomization off in order to figure out Distance Between Buffer Base Address and Return Address as

well as the address of the malicious code using the gdb debugger. As you can see above, the file I used in

the gdb debugger I named stack_gdb to explore and figure out the information I needed to. The distance

is 0x24 which is also 36, so I added 36 to the buffer and then added the calculated address of

0xbfffea50. I also put the shellcode at the end of the buffer. This then allowed me to use ./exploit and

./stack to get to the shell which was owned by root. I checked this by using the id and whoami

command.

Task 3: Defeating Dash’s Countermeasures

With Line Commented Out

Here with the setuid(0); commented out, we are able to reach a shell, but it is the seed shell, not root.

The dash dropped privileges because the EUID and UID were not the same.

Without Line Commented Out

In this screenshot, I changed the dash_shell_test to include setuid(0); Because of this we were able to

reach the root shell. The setuid(0) is able to change the UID to the EUID which in this case is root and we

were then granted a root shell.

After inserting shellcode into exploit.c

As you can see in the screenshots above, I have successfully added in the assembly for the setuid(0) into

the shellcode which is in my exploit.c. I did the attack again and we are still in the /bin/dash shell and it

worked to get the root shell. I was able to get around the countermeasure in dash. The UID is 0 and a

root shell was opened up.

Task 4: Address Randomization

I used the shell script to continuously run the ./stack program with the address randomization turned

on. You can see in the screenshots above it took much longer to exploit the program with the

randomization turned on. I was able to get to a root shell after 69,042 times and 2 minutes 55 seconds.

It is a lot more difficult to exploit the stack when the randomization on.

Task 5: Stack Guard

In the screenshot above you can see that the address randomization was turned off, but stack.c was

recompiled to allow the stack to be executable meaning Stack Guard protection was on to prevent an

attack. I was not able to reach a root shell and the process was terminated because Stack Guard was

able to determine that a local variable was modified within the program. Stack Guard checked and

verified the function local variable and found that it was not correct so it terminated the program.

Task 6: Non-Executable Stack

Task 6 requires the address randomization and Stack Guard to be turned off. I compiled stack.c with a

non-executable stack. After doing these commands, you can see I am not able to obtain a root shell and

get an error message saying “segmentation fault.” Because the stack.c was compiled with a non-

executable stack it produces a segmentation fault because the buffer overflow exploit is trying to access

memory that it is not allow to which produces the error. Having a non-executable stack makes it a lot

harder to exploit the stack to allow a buffer overflow attack.

