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Abstract 

 In recent years, the development and 

deployment of computer vision models have 

become widespread, with applications 

ranging from autonomous vehicles to 

security systems. Among these, object 

detection algorithms like YOLO are 

particularly significant due to their real-time 

performance and accuracy in identifying and 

localizing objects within an image. However, 

the robustness of these models is increasingly 

challenged by adversarial attacks, which are 

deliberate manipulations designed to deceive 

the model's predictions. 

In this paper, I present an approach to 

advancing the deception capabilities of 

adversarial patches, specifically targeting 

YOLO-based person detectors. The objective 

is to design and implement shaped 

adversarial patches that can be applied 

directly over a person, effectively lowering 

the confidence scores of the detector and 

ultimately fooling the system into failing to 

recognize the person altogether. 

This work builds on existing 

research in adversarial machine learning, 

where the creation of adversarial patches has 

been shown to significantly undermine the  

 

Figure 1: Comparing control patch, initial 

star patch, star patch after 99 epoch, and 

circular patch. Patch initialized from a star 

shape and trained for 99 epochs outperforms 

the control patch. Proving the concept that 

initializing from a shaped patch may yield 

better detection loss. 

reliability of computer vision models. By 

exploring new patch shapes and 

configurations, I aim to enhance the 

effectiveness of these patches, making them 

more adaptable and capable of bypassing 

detection algorithms. The results of this 

research could have profound implications 

for the security and reliability of AI systems 

in real-world environments, where 

adversarial attacks pose a growing threat.  
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Introduction 

 Machine learning, a subset of 

artificial intelligence, has revolutionized the 

way computers interpret and analyze vast 

amounts of data. In particular, computer 

vision algorithms, which enable machines to 

perceive and understand visual information 

from the world, have seen remarkable 

advancements. Among these, the YOLO 

algorithm [1] stands out as a highly efficient 

real-time object detection system. It is 

capable of identifying and classifying 

objects within images and video streams 

with impressive speed and accuracy. 

However, as powerful as these systems are, 

they are not without vulnerabilities. 

Adversarial patches represent a significant 

challenge in this field [2] [3] [4] [5] [6]. 

These are carefully crafted patterns designed 

to deceive machine learning models, 

specifically targeting object detection 

algorithms like YOLO. By subtly altering an 

image, adversarial patches can cause the 

system to misidentify or completely 

overlook objects, highlighting the ongoing 

need for robust defenses against such 

exploits. 

 Adversarial patches exploit the 

vulnerabilities in machine learning models 

by introducing noise or patterns that are 

imperceptible or seem benign to the human 

eye but can cause significant 

misclassifications by the model. For 

example, enabling a person to become 

undetectable with a printed patch in real life 

[7]. Adversarial patches achieve this 

disruption by undergoing a specialized 

optimization process that fine-tunes the 

pattern or perturbation to maximize its 

impact on the model’s predictions.  

Creating an adversarial patch 

involves several key elements that work 

together to craft a pattern capable of 

deceiving a machine learning model. The 

process begins with a random pattern or an 

initial guess for the patch. This patch is 

placed over a set of training images, which 

are then fed into the model. These images 

also have corresponding ground truth labels. 

The model's responses to these modified 

images are analyzed. The goal is to observe 

how the patch affects the model's ability to 

correctly classify the objects in the images. 

Using gradient descent, the patch is 

iteratively adjusted to maximize its 

disruptive effect. The gradients provide 

information about how changes to the patch 

influence the model’s output, guiding the 

optimization process to make the patch more 

effective at causing misclassification. This 

process is repeated many times, with the 

patch being continuously refined to increase 

its impact on the model. The optimization 

seeks to make the patch as small and 

inconspicuous as possible while still causing 

the maximum disruption to the model's 

ability to recognize objects [8]. This is done 

by iteratively adjusting the patch so that 

when it is placed in an image, it minimizes 

the confidence of the correct class and 

maximizes the likelihood of incorrect 

classifications.  

 

Related work 

 Interest in adversarial patch attacks 

has increased in recent years, sparking an 

arms race between adversarial patches and 

the development of robust defense 

mechanisms designed to mitigate their 

effects. This section will go over notable 



works. Then briefly discuss the YOLOv2 

that was used for this work. 

 

Adversarial arms race 

 The “adversarial arms race” refers to 

the ongoing and rapidly evolving 

competition between the creation of 

adversarial patches and the development of 

defenses against these attacks. As 

adversarial patches become more advanced 

and capable of fooling even the most 

sophisticated models, researchers and 

practitioners are continuously developing 

new strategies to protect models from these 

vulnerabilities. The arms race between 

adversarial patches and defense mechanisms 

has led to significant research and 

developments in recent years. Some notable 

works that have made an impact include: 

Brown et al. [9] introduced the concept of 

the adversarial patch, a small, localized 

perturbation that can cause a machine 

learning model to misclassify objects in an 

image. The study demonstrated that these 

patches could work across various contexts 

and even in the physical world, marking a 

significant leap in the sophistication of 

adversarial attacks. In 2018 Kevin et al. [11] 

extended the concept of adversarial patches 

to the physical world, showing that they are 

capable of fooling real-world object 

detectors. By applying adversarial patches to 

road signs, the authors demonstrated how 

these attacks could cause a model to 

misclassify critical objects. In 2020 Xiaoyun 

et al. [10]  introduced a defense mechanism 

against adversarial patches by utilizing a 

mechanism called " differential analysis." 

PatchGuard was a significant advancement 

in creating more robust defenses by reducing 

the area of influence that an adversarial 

patch could have, making it harder for the 

patches to affect the model’s output.  

 In 2019 Simen Thys et al. [7] 

created a system to generate adversarial 

patches and print them. These patches were 

specifically designed to deceive person 

detectors. This work demonstrates the real-

world applicability of adversarial attacks 

beyond just digital manipulation. In their 

work, they built a patch generator which 

started with a random initialization. The 

patches were applied to the INRIA dataset to 

iteratively train the patch generator. The 

weights and activation functions were 

updated at the end of each epoch. The loss 

function used to train the patch generator is 

the sum of YOLO detection loss, patch 

printability, and total variation in the patch 

colors.  

 

YOLO 

 In this paper I target the well known 

YOLOv2 object detector. YOLOv2 [12] is a 

real-time object detection model that builds 

on the strengths of its predecessor by 

introducing several key innovations. It uses 

a fully convolutional network architecture, 

known as Darknet-19, which consists of 19 

convolutional layers and 5 max-pooling 

layers to efficiently extract features from 

input images. YOLOv2 divides the input 

image into a grid and predicts bounding 

boxes, object confidence scores, and class 

probabilities for each grid cell. The model 

incorporates anchor boxes, allowing it to 

predict bounding boxes of varying aspect 

ratios and sizes more effectively. These 

anchor boxes are optimized using k-means 

clustering, ensuring they are well-suited to 



the objects in the dataset. YOLOv2 also 

employs batch normalization across all 

convolutional layers to stabilize training, 

and a pass-through layer that combines high-

resolution features with coarse features, 

improving the detection of smaller objects. 

Additionally, the model is trained using a 

multi-scale approach, making it robust to 

different input resolutions. The result is a 

highly efficient and accurate object detector 

capable of processing images at up to 67 

frames per second, suitable for a wide range 

of real-time applications. 

 

Methodology 

 This work was conducted using three 

different machines: an Alienware desktop 

running Ubuntu 24, a Legion Shm 5 laptop 

with Windows 10, and a Jetson Nano. The 

Alienware machine was equipped with an 

Intel Core i7 CPU, an NVIDIA GeForce 

RTX 3070 Ti graphics card, and 1TB of 

storage, providing a powerful setup for 

intensive computational tasks. The Legion 

Shm 5 laptop featured an AMD Ryzen 5 

7000 series CPU, an NVIDIA GeForce RTX 

3050 graphics card, and 16 GB of RAM, 

offering a balanced performance for 

development and testing. The Jetson Nano, 

with its 128-core NVIDIA Maxwell GPU, 

quad-core ARM Cortex-A57 processor, 4 

GB of 64-bit LPDDR4 memory, and 128GB 

microSD storage, ran on Linux for Tegra 

(L4T), making it ideal for mobility. 

 For software development and code 

execution, PyCharm was chosen as the 

integrated development environment (IDE) 

due to its robust features that streamline the 

coding process. Its capabilities, such as on-

the-fly error checking and comprehensive 

support for Python libraries, made it 

particularly well-suited for machine learning 

and computer vision tasks. The primary 

framework used to build the algorithms for 

the experiment was PyTorch, which 

facilitated the training and fine-tuning of 

models. Conda was used as the environment 

manager and interpreter, ensuring a 

consistent and reproducible development 

environment across different platforms. The 

EAVISE GitLab repository of adversarial-

yolo provided the code and the neural 

networks used for the experiments. The 

patches were initially run on the Alienware 

machine, and later run on the windows 

machine, then deployed against yolov2 on 

the jetson nano.  

The goal of this work is to generate 

printable shaped adversarial patches that can 

be used to fool person detectors. As 

discussed earlier, Simen Thys et al. [7] 

already showed a system to generate 

printable patches that are capable of fooling 

a YOLO person detector. Most work done 

on adversarial patches, including Simen & 

Wiebe, use a square patch of various sizes 

and transformations. 

 In this work I present two studies. 

The first study examines the impact on 

detection loss if the patch shapes are varied 

and using various striped patches. The 

second study uses some of these patches as 

seeds to continue training the adversarial 

patch generator. I experiment with different 

shaped patches in order to test their 

effectiveness at deceiving YOLOv2. I began 

by selecting their top performing patches as 

seeds to further train the adversarial patch 

creator to generate shaped patches. I then 



tried seeding with various shaped patches to 

run through the optimization process.  

 

Dataset Used for this work 

This work uses a dataset from INRIA 

(Institut de national de research en sciences 

and technologies based in France). It 

consists of over six hundred images with 

over 2000 people. I followed the same 

method as Simen Thys et al. [7], my 

workflow is as follows: I first run the target 

person detector over the INRIA dataset of 

images. This yielded bounding boxes 

showing where people were in the image as 

detected by YOLO. On a fixed position 

relative to these bounding boxes, a patch is 

applied to the image. The resulting image is 

then fed, in batches of 20 back into the 

detector. I measured the score of the persons 

that are still detected. Using back 

propagation through the entire network, the 

optimiser then changes the pixels in the 

patch further in order to fool the detector 

even more. In my tests, I used images from 

my family photo album. Each image in the 

dataset is unique, differing in the number of 

people present, the background scenery, and 

the extent to which objects or individuals are 

obscured. This diversity ensures a 

comprehensive evaluation of the adversarial 

patches' effectiveness across a range of real-

world scenarios. Depicted in figure 2 are 

Crops 001007, 001097, 001267, and 

001842. 

 

 
Figure 2 

 

Results 

 For the first study eight patches were 

generated and tested against YOLOv2 to 

measure the detection confidence. These 

patches are illustrated in figure 3. The code 

from Simen and Wiebe [7] were used to 

apply these patches to the INRIA images. 

The dataset was divided into 31 batches with 

20 images in each batch. The patches 

depicted in column two  of figure 3 were run 

as is with no further training. Note that the 

first patch  (adv) is from work by Simen [7]. 

The other patches are based on their work 

with other image processing. The striped 

images were downloaded from the web. The 

base confidence scores are shown in column 

three. The table also gives non printability 

scores and total variation loss metrics. The 

test on each patch ran for about two minutes, 

as shown in column six. 

 



 
Figure 3 

 

 

This test examines circular patches 

(advcircle, circle2), irregular shaped patches 

(star and heart), and striped patches 

(stripes_3D, stripes_angle, stripes_checker). 

For each patch the YOLOv2 confidence 

scores were logged for every image into a 

text file. The code was modified to log the 

confidence scores for all images. The text 

files were used to plot the distributions. 

Several of the distributions are plotted in 

figure 4. A sample of the INRIA with the 

corresponding patch is also given in figure 

4. Note that the distribution given in figure 4 

represents all images in the dataset with the 

corresponding patches applied.  

As it turns out, the patch shape or 

content variations did not seem to improve 

the detector loss over the original square 

patch. The histograms for each patch are 

summarized in whisker plots in figure 4. 

Note that several of the patches are capable 

of lowering the confidence scores to 20-

40%, as seen on figure 4. This has grave 

implications for vision systems used to 

prevent self-driving cars from hitting 

pedestrians. 

 

 

 
Figure 4: Graphs show detailed 

histograms for yolo confidence per each 

patch over the entire dataset with patch 

applied. Patch images are samples of the 

patched images fed to yolov2 

 

 



Figure 5:  whisker plot of the yolo 

confidence distribution for the tested patches 

 

 
Figure 6: patches before training 

 

 
Figure 7: Patches after 20 epochs 

 

Based on figure 6 several patches 

were selected as seeds, or initialization 

points, to further train the adversarial patch 

maker. Amongst the selected patches are: 

heart, star, and AdvCircle depicted in Figure 

7. The Adv patch was also run for a 

comparison. Each patch was trained for 20 

epochs consisting of 31 batches in each 

epoch. Each batch contained 20 images from 

the INRIA dataset. The adversarial code is 

structured to update weights after each 

epoch. 

Figure 6 shows the patches before 

training. Figure 7 depicts the patches after 

20 epochs of training. Note that in the first 

case the heart is initialized as a well defined 

shape. After 20 epochs of training it morphs 

to fill in the external areas such that only a 

faint outline of the heart geometry is still 

visible. Likewise in the star patch, after 20 

epochs of training, the outline of the star 

patch is barely visible. The adv patch is run 

as a control to compare the detector loss 

results. 

The code was modified to add 

coefficients for each of the three cost 

components in the cost function. The loss 

function in [7] can be rephrased for 

simplicity as follows. 

 

Total Cost = (alpha * NPS) + (beta * TV) + 

(charlie * yolo loss) 

 

 Alpha is the weight for the non 

printability score, beta is the weight for the 

color variation, and charlie is the weight for 

detector loss.The adversarial patch trainer 

minimizes the total cost using the stochastic 

gradient descent with the ADAM optimizer. 

The test emphasizes yolo loss in the 

adversarial patch training process. Figure 8 

shows the training weight values used for 

this test compared to the original values. 

Note that the detector loss weight is 

increased by 100% while the color variation 

is reduced and the detector loss doubled. 

 

 
Figure 8: weights for adversarial patch 

trainer cost function 

 

 It is thought that seeding the 

adversarial patch model with previous runs 

would improve the training speed of the 

adversarial patch generation model. Figure 9 

shows a comparison of two 20 epoch runs 

starting with different seeds. For this 

comparison the heart shape seed patch is 

compared to the adv reference patch from 

[7]. Figure 9 shows the three metrics in the 



loss function as well as the total loss (bottom 

left). It is apparent from the detector loss 

that the adv patch is a better starting point to 

continue training than the heart shaped patch 

(top left). But the nps score shows that the 

heart patch is easier to print (top right). The 

color variation for both patches are about the 

same (bottom left). The total loss shows that 

the adv patch is more effective than the 

shaped heart (bottom right). A short 20 

epoch run is a good tool to determine which 

starting patch is best to use for continuation 

of the training for the adversarial patch 

maker model. 

 

 
Figure 9: Comparing loss metrics between 

heart (orange trace) and control adv patch 

(blue trace).  

 

 

 

 The star patch was studied more 

thoroughly in a case that is run for 100 

epochs. Figure 10 depicts between 20 and 

100 epochs. Both runs were initialized with 

the same seed patch. The resulting patches 

are similar, but visibly different in the lower 

left and mid left sections. The detector loss 

graphs from the tensor board are given in the 

fourth row. The third row displays the 

detector loss, which decreased from 74% to 

68%. After 100 epochs, the detector loss 

decreased further to 66%. After 100 epochs 

there is still perturbation in detector loss. It’s 

possible that more training epochs are 

needed before the detector loss will 

converge 

 Likewise with the total loss function 

(or cost function) in the last row. After 20 

epochs the total loss is 1.02, it appears that 

after 100 training epochs the total loss 

decreased to 0.97. It also appears that more 

training epochs are needed for total loss to 

converge. 

 
Figure 10: Comparison of star seed patch 

after 20 epochs and 100 epochs 

 



 
 Figure 11: Comparing effectiveness 

of two different seeds to get to desired 

solution.  

One additional comparison was 

made to see if time could be saved by 

starting out with a better seed patch. Figure 

11 compares the results of the 20 epoch adv 

patch with the 100 epoch run of star patch. 

The graph shows Blue trace is the total loss 

of the Adv patch compared to that of the star 

patch in yellow.  It indicates that much 

training effort may be saved if starting with 

a better seed patch.  As seen in the figure, 

the star patch after 100 epoch is just starting 

to approach the total loss of the adv patch. 

 

Conclusion 

 This internship began with literature 

review of computer vision adversarial 

attacks. Both physical and digital attacks 

were compared. It was decided to focus on 

digital attacks because there is no easy way 

to print adversarial patches to assess their 

effectiveness in physical attacks. 

 Reference code from [7] was studied 

and used to see if the author’s patches could 

be improved upon by using more diverse 

characteristics. The reference code was 

modified so that training could be seeded 

with previously tested patches. This allows 

study using various seed patches. Some of 

the characteristics studied include using 

different shaped seed patches and striped 

patches. A comparison was done with the 

author’s best performance patch (adv) a 

series of short training epochs were used to 

assess the effectiveness of different seed 

patches to narrow down the selection.  

 It was found that using a series of 

short training epochs, it is possible to 

determine which seed patches will be more 

effective. The results show that much time 

could be saved by doing an initial study with 

short training epochs. An attempt was made 

to study different shaped patches, but no 

easy way was found in python to create 

irregular shaped patches such as stars and 

hearts. As well as making the background 

transparent. This is partly because the 

original code expected RGB (3 dimensional) 

pixels and did not allow RGBA formats 

which map into four dimensional pixels. So 

in this study the shaped patches were placed 

onto a 300x300 pixel template with varying 

backgrounds, mostly black to fill the void. 

Future work 

 Given more time there are several 

areas that could be improved. As mentioned 

before the majority of the adversarial patch 

research uses square patches. Effectiveness 

of irregular shaped patches could be studied 

in more depth. One of the key performance 

metrics of the adversarial patch is the 

misclassification of people in the INRIA 

database. There was no easy way to 

determine whether yolo misdetections of a 

person throughout the entire training set. For 

future work, the cost function should add a 

fourth variable that determines 

misdetections. As always, more time is 

always useful to run training with a greater 

number of epochs.  



 
Figure 12: Example of striped patches  and 

heart patch over samples from dataset 
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