
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

2025 Knowledge and Creativity Expo 2025 Knowledge and Creativity Expo

31 - Shaped Adversarial Patches 31 - Shaped Adversarial Patches

Huong Quach

Follow this and additional works at: https://digitalcommons.odu.edu/undergradsymposium

 Part of the Electrical and Computer Engineering Commons

Quach, Huong, "31 - Shaped Adversarial Patches" (2025). 2025 Knowledge and Creativity Expo. 13.
https://digitalcommons.odu.edu/undergradsymposium/2025/postersession1/13

This Poster is brought to you for free and open access by the Undergraduate Student Events at ODU Digital
Commons. It has been accepted for inclusion in 2025 Knowledge and Creativity Expo by an authorized
administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/undergradsymposium
https://digitalcommons.odu.edu/undergradsymposium/2025
https://digitalcommons.odu.edu/undergradsymposium?utm_source=digitalcommons.odu.edu%2Fundergradsymposium%2F2025%2Fpostersession1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fundergradsymposium%2F2025%2Fpostersession1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/undergradsymposium/2025/postersession1/13?utm_source=digitalcommons.odu.edu%2Fundergradsymposium%2F2025%2Fpostersession1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

Shaped adversarial patches

Huong Y Quach

Department of Cybersecurity

Old Dominion University

5115 Hampton Blvd, Norfolk, VA 23529

hquac001@odu.edu

Abstract

 In recent years, the development and

deployment of computer vision models have

become widespread, with applications

ranging from autonomous vehicles to

security systems. Among these, object

detection algorithms like YOLO are

particularly significant due to their real-time

performance and accuracy in identifying and

localizing objects within an image. However,

the robustness of these models is increasingly

challenged by adversarial attacks, which are

deliberate manipulations designed to deceive

the model's predictions.

In this paper, I present an approach to

advancing the deception capabilities of

adversarial patches, specifically targeting

YOLO-based person detectors. The objective

is to design and implement shaped

adversarial patches that can be applied

directly over a person, effectively lowering

the confidence scores of the detector and

ultimately fooling the system into failing to

recognize the person altogether.

This work builds on existing

research in adversarial machine learning,

where the creation of adversarial patches has

been shown to significantly undermine the

Figure 1: Comparing control patch, initial

star patch, star patch after 99 epoch, and

circular patch. Patch initialized from a star

shape and trained for 99 epochs outperforms

the control patch. Proving the concept that

initializing from a shaped patch may yield

better detection loss.

reliability of computer vision models. By

exploring new patch shapes and

configurations, I aim to enhance the

effectiveness of these patches, making them

more adaptable and capable of bypassing

detection algorithms. The results of this

research could have profound implications

for the security and reliability of AI systems

in real-world environments, where

adversarial attacks pose a growing threat.

mailto:hquac001@odu.edu

Introduction

 Machine learning, a subset of

artificial intelligence, has revolutionized the

way computers interpret and analyze vast

amounts of data. In particular, computer

vision algorithms, which enable machines to

perceive and understand visual information

from the world, have seen remarkable

advancements. Among these, the YOLO

algorithm [1] stands out as a highly efficient

real-time object detection system. It is

capable of identifying and classifying

objects within images and video streams

with impressive speed and accuracy.

However, as powerful as these systems are,

they are not without vulnerabilities.

Adversarial patches represent a significant

challenge in this field [2] [3] [4] [5] [6].

These are carefully crafted patterns designed

to deceive machine learning models,

specifically targeting object detection

algorithms like YOLO. By subtly altering an

image, adversarial patches can cause the

system to misidentify or completely

overlook objects, highlighting the ongoing

need for robust defenses against such

exploits.

 Adversarial patches exploit the

vulnerabilities in machine learning models

by introducing noise or patterns that are

imperceptible or seem benign to the human

eye but can cause significant

misclassifications by the model. For

example, enabling a person to become

undetectable with a printed patch in real life

[7]. Adversarial patches achieve this

disruption by undergoing a specialized

optimization process that fine-tunes the

pattern or perturbation to maximize its

impact on the model’s predictions.

Creating an adversarial patch

involves several key elements that work

together to craft a pattern capable of

deceiving a machine learning model. The

process begins with a random pattern or an

initial guess for the patch. This patch is

placed over a set of training images, which

are then fed into the model. These images

also have corresponding ground truth labels.

The model's responses to these modified

images are analyzed. The goal is to observe

how the patch affects the model's ability to

correctly classify the objects in the images.

Using gradient descent, the patch is

iteratively adjusted to maximize its

disruptive effect. The gradients provide

information about how changes to the patch

influence the model’s output, guiding the

optimization process to make the patch more

effective at causing misclassification. This

process is repeated many times, with the

patch being continuously refined to increase

its impact on the model. The optimization

seeks to make the patch as small and

inconspicuous as possible while still causing

the maximum disruption to the model's

ability to recognize objects [8]. This is done

by iteratively adjusting the patch so that

when it is placed in an image, it minimizes

the confidence of the correct class and

maximizes the likelihood of incorrect

classifications.

Related work

 Interest in adversarial patch attacks

has increased in recent years, sparking an

arms race between adversarial patches and

the development of robust defense

mechanisms designed to mitigate their

effects. This section will go over notable

works. Then briefly discuss the YOLOv2

that was used for this work.

Adversarial arms race

 The “adversarial arms race” refers to

the ongoing and rapidly evolving

competition between the creation of

adversarial patches and the development of

defenses against these attacks. As

adversarial patches become more advanced

and capable of fooling even the most

sophisticated models, researchers and

practitioners are continuously developing

new strategies to protect models from these

vulnerabilities. The arms race between

adversarial patches and defense mechanisms

has led to significant research and

developments in recent years. Some notable

works that have made an impact include:

Brown et al. [9] introduced the concept of

the adversarial patch, a small, localized

perturbation that can cause a machine

learning model to misclassify objects in an

image. The study demonstrated that these

patches could work across various contexts

and even in the physical world, marking a

significant leap in the sophistication of

adversarial attacks. In 2018 Kevin et al. [11]

extended the concept of adversarial patches

to the physical world, showing that they are

capable of fooling real-world object

detectors. By applying adversarial patches to

road signs, the authors demonstrated how

these attacks could cause a model to

misclassify critical objects. In 2020 Xiaoyun

et al. [10] introduced a defense mechanism

against adversarial patches by utilizing a

mechanism called " differential analysis."

PatchGuard was a significant advancement

in creating more robust defenses by reducing

the area of influence that an adversarial

patch could have, making it harder for the

patches to affect the model’s output.

 In 2019 Simen Thys et al. [7]

created a system to generate adversarial

patches and print them. These patches were

specifically designed to deceive person

detectors. This work demonstrates the real-

world applicability of adversarial attacks

beyond just digital manipulation. In their

work, they built a patch generator which

started with a random initialization. The

patches were applied to the INRIA dataset to

iteratively train the patch generator. The

weights and activation functions were

updated at the end of each epoch. The loss

function used to train the patch generator is

the sum of YOLO detection loss, patch

printability, and total variation in the patch

colors.

YOLO

 In this paper I target the well known

YOLOv2 object detector. YOLOv2 [12] is a

real-time object detection model that builds

on the strengths of its predecessor by

introducing several key innovations. It uses

a fully convolutional network architecture,

known as Darknet-19, which consists of 19

convolutional layers and 5 max-pooling

layers to efficiently extract features from

input images. YOLOv2 divides the input

image into a grid and predicts bounding

boxes, object confidence scores, and class

probabilities for each grid cell. The model

incorporates anchor boxes, allowing it to

predict bounding boxes of varying aspect

ratios and sizes more effectively. These

anchor boxes are optimized using k-means

clustering, ensuring they are well-suited to

the objects in the dataset. YOLOv2 also

employs batch normalization across all

convolutional layers to stabilize training,

and a pass-through layer that combines high-

resolution features with coarse features,

improving the detection of smaller objects.

Additionally, the model is trained using a

multi-scale approach, making it robust to

different input resolutions. The result is a

highly efficient and accurate object detector

capable of processing images at up to 67

frames per second, suitable for a wide range

of real-time applications.

Methodology

 This work was conducted using three

different machines: an Alienware desktop

running Ubuntu 24, a Legion Shm 5 laptop

with Windows 10, and a Jetson Nano. The

Alienware machine was equipped with an

Intel Core i7 CPU, an NVIDIA GeForce

RTX 3070 Ti graphics card, and 1TB of

storage, providing a powerful setup for

intensive computational tasks. The Legion

Shm 5 laptop featured an AMD Ryzen 5

7000 series CPU, an NVIDIA GeForce RTX

3050 graphics card, and 16 GB of RAM,

offering a balanced performance for

development and testing. The Jetson Nano,

with its 128-core NVIDIA Maxwell GPU,

quad-core ARM Cortex-A57 processor, 4

GB of 64-bit LPDDR4 memory, and 128GB

microSD storage, ran on Linux for Tegra

(L4T), making it ideal for mobility.

 For software development and code

execution, PyCharm was chosen as the

integrated development environment (IDE)

due to its robust features that streamline the

coding process. Its capabilities, such as on-

the-fly error checking and comprehensive

support for Python libraries, made it

particularly well-suited for machine learning

and computer vision tasks. The primary

framework used to build the algorithms for

the experiment was PyTorch, which

facilitated the training and fine-tuning of

models. Conda was used as the environment

manager and interpreter, ensuring a

consistent and reproducible development

environment across different platforms. The

EAVISE GitLab repository of adversarial-

yolo provided the code and the neural

networks used for the experiments. The

patches were initially run on the Alienware

machine, and later run on the windows

machine, then deployed against yolov2 on

the jetson nano.

The goal of this work is to generate

printable shaped adversarial patches that can

be used to fool person detectors. As

discussed earlier, Simen Thys et al. [7]

already showed a system to generate

printable patches that are capable of fooling

a YOLO person detector. Most work done

on adversarial patches, including Simen &

Wiebe, use a square patch of various sizes

and transformations.

 In this work I present two studies.

The first study examines the impact on

detection loss if the patch shapes are varied

and using various striped patches. The

second study uses some of these patches as

seeds to continue training the adversarial

patch generator. I experiment with different

shaped patches in order to test their

effectiveness at deceiving YOLOv2. I began

by selecting their top performing patches as

seeds to further train the adversarial patch

creator to generate shaped patches. I then

tried seeding with various shaped patches to

run through the optimization process.

Dataset Used for this work

This work uses a dataset from INRIA

(Institut de national de research en sciences

and technologies based in France). It

consists of over six hundred images with

over 2000 people. I followed the same

method as Simen Thys et al. [7], my

workflow is as follows: I first run the target

person detector over the INRIA dataset of

images. This yielded bounding boxes

showing where people were in the image as

detected by YOLO. On a fixed position

relative to these bounding boxes, a patch is

applied to the image. The resulting image is

then fed, in batches of 20 back into the

detector. I measured the score of the persons

that are still detected. Using back

propagation through the entire network, the

optimiser then changes the pixels in the

patch further in order to fool the detector

even more. In my tests, I used images from

my family photo album. Each image in the

dataset is unique, differing in the number of

people present, the background scenery, and

the extent to which objects or individuals are

obscured. This diversity ensures a

comprehensive evaluation of the adversarial

patches' effectiveness across a range of real-

world scenarios. Depicted in figure 2 are

Crops 001007, 001097, 001267, and

001842.

Figure 2

Results

 For the first study eight patches were

generated and tested against YOLOv2 to

measure the detection confidence. These

patches are illustrated in figure 3. The code

from Simen and Wiebe [7] were used to

apply these patches to the INRIA images.

The dataset was divided into 31 batches with

20 images in each batch. The patches

depicted in column two of figure 3 were run

as is with no further training. Note that the

first patch (adv) is from work by Simen [7].

The other patches are based on their work

with other image processing. The striped

images were downloaded from the web. The

base confidence scores are shown in column

three. The table also gives non printability

scores and total variation loss metrics. The

test on each patch ran for about two minutes,

as shown in column six.

Figure 3

This test examines circular patches

(advcircle, circle2), irregular shaped patches

(star and heart), and striped patches

(stripes_3D, stripes_angle, stripes_checker).

For each patch the YOLOv2 confidence

scores were logged for every image into a

text file. The code was modified to log the

confidence scores for all images. The text

files were used to plot the distributions.

Several of the distributions are plotted in

figure 4. A sample of the INRIA with the

corresponding patch is also given in figure

4. Note that the distribution given in figure 4

represents all images in the dataset with the

corresponding patches applied.

As it turns out, the patch shape or

content variations did not seem to improve

the detector loss over the original square

patch. The histograms for each patch are

summarized in whisker plots in figure 4.

Note that several of the patches are capable

of lowering the confidence scores to 20-

40%, as seen on figure 4. This has grave

implications for vision systems used to

prevent self-driving cars from hitting

pedestrians.

Figure 4: Graphs show detailed

histograms for yolo confidence per each

patch over the entire dataset with patch

applied. Patch images are samples of the

patched images fed to yolov2

Figure 5: whisker plot of the yolo

confidence distribution for the tested patches

Figure 6: patches before training

Figure 7: Patches after 20 epochs

Based on figure 6 several patches

were selected as seeds, or initialization

points, to further train the adversarial patch

maker. Amongst the selected patches are:

heart, star, and AdvCircle depicted in Figure

7. The Adv patch was also run for a

comparison. Each patch was trained for 20

epochs consisting of 31 batches in each

epoch. Each batch contained 20 images from

the INRIA dataset. The adversarial code is

structured to update weights after each

epoch.

Figure 6 shows the patches before

training. Figure 7 depicts the patches after

20 epochs of training. Note that in the first

case the heart is initialized as a well defined

shape. After 20 epochs of training it morphs

to fill in the external areas such that only a

faint outline of the heart geometry is still

visible. Likewise in the star patch, after 20

epochs of training, the outline of the star

patch is barely visible. The adv patch is run

as a control to compare the detector loss

results.

The code was modified to add

coefficients for each of the three cost

components in the cost function. The loss

function in [7] can be rephrased for

simplicity as follows.

Total Cost = (alpha * NPS) + (beta * TV) +

(charlie * yolo loss)

 Alpha is the weight for the non

printability score, beta is the weight for the

color variation, and charlie is the weight for

detector loss.The adversarial patch trainer

minimizes the total cost using the stochastic

gradient descent with the ADAM optimizer.

The test emphasizes yolo loss in the

adversarial patch training process. Figure 8

shows the training weight values used for

this test compared to the original values.

Note that the detector loss weight is

increased by 100% while the color variation

is reduced and the detector loss doubled.

Figure 8: weights for adversarial patch

trainer cost function

 It is thought that seeding the

adversarial patch model with previous runs

would improve the training speed of the

adversarial patch generation model. Figure 9

shows a comparison of two 20 epoch runs

starting with different seeds. For this

comparison the heart shape seed patch is

compared to the adv reference patch from

[7]. Figure 9 shows the three metrics in the

loss function as well as the total loss (bottom

left). It is apparent from the detector loss

that the adv patch is a better starting point to

continue training than the heart shaped patch

(top left). But the nps score shows that the

heart patch is easier to print (top right). The

color variation for both patches are about the

same (bottom left). The total loss shows that

the adv patch is more effective than the

shaped heart (bottom right). A short 20

epoch run is a good tool to determine which

starting patch is best to use for continuation

of the training for the adversarial patch

maker model.

Figure 9: Comparing loss metrics between

heart (orange trace) and control adv patch

(blue trace).

 The star patch was studied more

thoroughly in a case that is run for 100

epochs. Figure 10 depicts between 20 and

100 epochs. Both runs were initialized with

the same seed patch. The resulting patches

are similar, but visibly different in the lower

left and mid left sections. The detector loss

graphs from the tensor board are given in the

fourth row. The third row displays the

detector loss, which decreased from 74% to

68%. After 100 epochs, the detector loss

decreased further to 66%. After 100 epochs

there is still perturbation in detector loss. It’s

possible that more training epochs are

needed before the detector loss will

converge

 Likewise with the total loss function

(or cost function) in the last row. After 20

epochs the total loss is 1.02, it appears that

after 100 training epochs the total loss

decreased to 0.97. It also appears that more

training epochs are needed for total loss to

converge.

Figure 10: Comparison of star seed patch

after 20 epochs and 100 epochs

 Figure 11: Comparing effectiveness

of two different seeds to get to desired

solution.

One additional comparison was

made to see if time could be saved by

starting out with a better seed patch. Figure

11 compares the results of the 20 epoch adv

patch with the 100 epoch run of star patch.

The graph shows Blue trace is the total loss

of the Adv patch compared to that of the star

patch in yellow. It indicates that much

training effort may be saved if starting with

a better seed patch. As seen in the figure,

the star patch after 100 epoch is just starting

to approach the total loss of the adv patch.

Conclusion

 This internship began with literature

review of computer vision adversarial

attacks. Both physical and digital attacks

were compared. It was decided to focus on

digital attacks because there is no easy way

to print adversarial patches to assess their

effectiveness in physical attacks.

 Reference code from [7] was studied

and used to see if the author’s patches could

be improved upon by using more diverse

characteristics. The reference code was

modified so that training could be seeded

with previously tested patches. This allows

study using various seed patches. Some of

the characteristics studied include using

different shaped seed patches and striped

patches. A comparison was done with the

author’s best performance patch (adv) a

series of short training epochs were used to

assess the effectiveness of different seed

patches to narrow down the selection.

 It was found that using a series of

short training epochs, it is possible to

determine which seed patches will be more

effective. The results show that much time

could be saved by doing an initial study with

short training epochs. An attempt was made

to study different shaped patches, but no

easy way was found in python to create

irregular shaped patches such as stars and

hearts. As well as making the background

transparent. This is partly because the

original code expected RGB (3 dimensional)

pixels and did not allow RGBA formats

which map into four dimensional pixels. So

in this study the shaped patches were placed

onto a 300x300 pixel template with varying

backgrounds, mostly black to fill the void.

Future work

 Given more time there are several

areas that could be improved. As mentioned

before the majority of the adversarial patch

research uses square patches. Effectiveness

of irregular shaped patches could be studied

in more depth. One of the key performance

metrics of the adversarial patch is the

misclassification of people in the INRIA

database. There was no easy way to

determine whether yolo misdetections of a

person throughout the entire training set. For

future work, the cost function should add a

fourth variable that determines

misdetections. As always, more time is

always useful to run training with a greater

number of epochs.

Figure 12: Example of striped patches and

heart patch over samples from dataset

Acknowledgements

The completion of this paper has

been made possible through the REU

program. I’m grateful for the opportunity to

learn more about computer vision,

adversarial attacks, and gain hands-on

research experience. I would like to thank

Dr. Peng and Dr. Gladden for mentoring me

throughout the summer, providing access to

equipment to complete this project, and

generously setting time aside for meetings.

Additionally, I would like to express my

gratitude to the program organizers. This

experience has been invaluable in enhancing

my knowledge and skills, and I look forward

to applying what I have learned in my future

endeavors.

References

[1] Redmon, J., Divvala, S.,

Girshick, R., & Farhadi, A.

(2016). You Only Look

Once: Unified, Real-Time

Object Detection.

https://www.cv-

foundation.org/openaccess/co

ntent_cvpr_f

[2] Adhikari, A., Den Hollander, R.,

Tolios, I., Van Bekkum, M.,

Bal, A., Hendriks, S.,

Kruithof, M., Gross, D.,

Jansen, N., Pérez, G.,

Buurman, K., & Raaijmakers,

S. (n.d.). ADVERSARIAL

PATCH CAMOUFLAGE

AGAINST AERIAL

DETECTION. Retrieved

June 10, 2024, from

https://arxiv.org/pdf/2008.13

671

[3] Brown, T., Mané, D., Roy, A.,

Abadi, M., & Gilmer, J.

(n.d.). Adversarial Patch.

Retrieved June 24, 2024,

from

https://arxiv.org/pdf/1712.09

665

[4] Czaja, W., Fendley, N., Pekala,

M., Ratto, C. R., & Wang, I-

Jeng. (2018). Adversarial

examples in remote sensing.

https://doi.org/10.1145/32748

95.3274904

[5] Du, A., Chen, B., Chin, T.-J.,

Yee, Law, W., Sasdelli, M.,

Rajasegaran, R., & Campbell,

D. (n.d.). Physical

Adversarial Attacks on an

Aerial Imagery Object

Detector. Retrieved June 3,

2024, from

https://openaccess.thecvf.com

/content/WACV2022/papers/

Du_Physicalpdf

[6] Sharif, M., Bhagavatula, S.,

Bauer, L., & Reiter, M. K.

(2016). Accessorize to a

Crime: Real and Stealthy

Attacks on State-of-the-Art

Face Recognition.

Proceedings of the 2016

ACM SIGSAC Conference

on Computer and

Communications Security -

CCS’16.

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://arxiv.org/pdf/2008.13671
https://arxiv.org/pdf/2008.13671
https://arxiv.org/pdf/1712.09665
https://arxiv.org/pdf/1712.09665
https://dl.acm.org/doi/pdf/10.1145/3274895.3274904
https://dl.acm.org/doi/pdf/10.1145/3274895.3274904
https://openaccess.thecvf.com/content/WACV2022/papers/Du_Physical_Adversarial_Attacks_on_an_Aerial_Imagery_Object_Detector_WACV_2022_paper.pdf
https://openaccess.thecvf.com/content/WACV2022/papers/Du_Physical_Adversarial_Attacks_on_an_Aerial_Imagery_Object_Detector_WACV_2022_paper.pdf
https://openaccess.thecvf.com/content/WACV2022/papers/Du_Physical_Adversarial_Attacks_on_an_Aerial_Imagery_Object_Detector_WACV_2022_paper.pdf

https://doi.org/10.1145/29767

49.2978392

[7] Thys, S., Van Ranst, W., &

Goedemé, T. (n.d.). Fooling

automated surveillance

cameras: adversarial patches

to attack person detection.

https://openaccess.thecvf.com

/content_CVPRW_2019/pape

rdf

[8] Ghanem, B., Rosso, P., &

Rangel, F. (2018). An

Emotional Analysis of False

Information in Social Media

and News Articles.

Association for Computing

Machinery, 1(1).

https://doi.org/10.1145/11224

45.112245

[9] Brown, T., Mané, D., Roy, A.,

Abadi, M., & Gilmer, J. (n.d.).

Adversarial Patch. Retrieved June

24, 2024, from

https://arxiv.org/pdf/1712.09665

[10] Xiang, C., Bhagoji, A., Sehwag,

V., & Mittal, P. (n.d.).

PatchGuard: A Provably

Robust Defense against

Adversarial Patches via

Small Receptive Fields and

Masking. Retrieved August

10, 2024, from

https://arxiv.org/pdf/2005.10

884

[11] Eykholt, K., Evtimov, I.,

Fernandes, E., Li, B., Rahmati, A.,

Tramèr, F., Prakash, A., Kohno, T.,

& Song, D. (n.d.). Physical

Adversarial Examples for Object

Detectors. Retrieved August 10,

2024, from

https://arxiv.org/pdf/1807.07769

[12]Redmon, J., & Farhadi, A. (n.d.).

YOLO9000: Better, Faster, Stronger.

Retrieved May 17, 2024, from

https://arxiv.org/pdf/1612.08242

[13] Adversarial patch attacks on

self-driving cars. (2022).

Blog.neater-Hut. https://blog.neater-

hut.com/adversarial-patch-attacks-

on-self-driving-cars.html

[14]Liu, X., Yang, H., Liu, Z., Song,

L., Li, H., & Chen, Y. (n.d.).

DPATCH: An Adversarial Patch

Attack on Object Detectors.

Retrieved August 10, 2024, from

https://arxiv.org/pdf/1806.02299

https://users.ece.cmu.edu/~lbauer/papers/2016/ccs2016-face-recognition.pdf
https://users.ece.cmu.edu/~lbauer/papers/2016/ccs2016-face-recognition.pdf
https://openaccess.thecvf.com/content_CVPRW_2019/papers/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2019/papers/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2019/papers/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.pdf
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://arxiv.org/pdf/1712.09665
https://arxiv.org/pdf/1807.07769
https://arxiv.org/pdf/1612.08242
https://blog.neater-hut.com/adversarial-patch-attacks-on-self-driving-cars.html
https://blog.neater-hut.com/adversarial-patch-attacks-on-self-driving-cars.html
https://blog.neater-hut.com/adversarial-patch-attacks-on-self-driving-cars.html

	31 - Shaped Adversarial Patches
	

	tmp.1740161052.pdf.3iCpW

