

Task A: Sword-Network Scanning

192.168.10.2

192.168.10.10

192.168.10.11

192.168.217.3

OBSERVING FTP, HTTP, TCP PORTS

HOST DETAILS

TABLE SUMMARY

Target 1st Scan:

192.168.10.0/24

Target 2nd Scan:

192.168.217.3

 Ports Port/State/Service/OS

External Kali 192.168.217.3 TCP port 111 TCP/UDP port 111 open

Service is rpcbind

Linux version is 3.7-3.10

pfSense 192.168.10.2 TCP port 53,80,443 TCP port 52 open

Service is TCPwrapped

TCP port 80 open

Service is HTTP

TCP port 443 open

Service is ssl/HTTP

Version is NGINX

Ubuntu 192.168.10.10 TCP port 21 TCP port 21 open

Service is FTP

OS is Unix

Windows 2008 192.168.10.11 TCP port 21,80,125,445,3389,49154 TCP port 21 open

Service is FTP

TCP port 80 open

Service is HTTP

TCP port 125 open

Microsoft httpd 7.5

TCP port 445 open

Windows Server

TCP port 3389 open

Tcpwrapped

TCP port 49154 open

Windows Server

OS is Windows 2008

2. Ran Wireshark in Ubuntu VM while External Kali is scanning the network and discussion of traffic

pattern observed below. An overall summary of the traffic patterns observed is that TCP, DNS, and ARP

were flowing. There were no firewall rules, apart from the default, in place yet, so I could ping from

external kali freely and create ftp traffic. This will change in B4, but to explain the screenshots below, one

example is Ubuntu and pfSense communication back and forth. Notice the standard broadcast message

highlighted in pastel yellow, ARP traffic. At this point, this is where I realized the zenmap I initiated from

external kali was creating multiple traffic patterns. The scan is trying to reach everyone in the network I

chose, which is what I see on Wireshark. Then the destinations are talking back and saying, "hey this is

open, succesful!" It happened fast, but the ARP messages and TCP traffic filled my screen. Another

traffic pattern to note, while not pictured, is below, but above instead via the zenmap intense scan is open

ports and successful scans. Ultimately, ICMP traffic is happening with Ext Kali, Ubuntu, and Windows

2008. The last important traffic pattern, also not shown, is successful FTP traffic, which I created using

External Kali to access Windows 2008 and Ubuntu's file transfers. In sum, I can access the VMs as a

malicious attacker and packets moving back and forth. Another way to put it is Wireshark revealed while

the scan was still running and, after completion, several open ports and packets of various protocols,

letting me know which doors were open and what type of door they were. So I could figure out, hey, this

destination is so and so on this platform using this type of software. All this information is in the packets

on Wireshark, but zenmap puts it on a GUI so I can sift through the information faster and more

efficiently.

TASK B: SHIELD-PROTECT NETWORK

1. Configured the pfSense firewall rule to block the ICMP traffic from External Kali to Ubuntu VM and

tested using ping command to communicate with Ubuntu because the ping command falls into the ICMP

category. The ping was unsuccessful, therefore firewall rule is working. I also used the ping command to

contact Windows 2008, which was successful because it is not a destination I excluded in my firewall

rule.

Rule # Interface Action Source IP Destination IP Protocol /Port #

2 WAN BLOCK 192.168.217.3 192.168.10.10 ICMP/ N/A

2. Cleared the previous firewall policies and configured the pfSense firewall to block all ICMP traffic

from External Kali to the LAN side and tested using ping command for my LAN network (Ubuntu,

Windows 2008). Saucerful ping, no packets transferred, successful firewall rule. Also tested by creating

FTP traffic by trying to access from external Kali, this was successful because I did not create an

additional rule to block this traffic.

Rule # Interface Action Source IP Destination IP Protocol /Port #

2 WAN BLOCK 192.168.217.3 ALL LAN ICMP/ N/A

3. Cleared the previous firewall polices and configured the pfSense firewall to block ALL traffic from

External Kali to the LAN side, except for the FTP protocol towards Windows Server 2008. This took me

two rules to achieve, the first blocks ICMP traffic from Ext Kali to my Lan net and then the next rule

blocks all the FTP traffic towards Windows from Ext Kali. I tested this my using the ping command and

creating FTP traffic from Ext Kali. This time there weren’t any successful pings and the only successful

FTP connection was between Ext Kali and Windows 2008 as pictured below. I double checked this by

looking at Wireshark from Ubuntu and adding the ftp display filter to see where my ftp traffic was

coming and going, as in the destination and sources Ips of Ext Kali and Windows 2008. I wanted to

double check that this indeed was the only traffic FTP happening and it was.

Rule # Interface Action Source IP Destination IP Protocol /Port #

2 WAN BLOCK 192.168.217.3 LAN NET ICMP/ N/A

3 WAN BLOCK

EXCEPT !

192.168.217.3 LAN NET BUT

!192.168.10.11

BLOCK

FTP(TCP) 21

4. I kept the firewall policies I created in Task B.3 and repeated Task A.1. The difference is substantial

because pfSense is still up, but Ubuntu and Windows 2008 are not. This is an important portion because I

know they are running but the firewall rules I created are preventing the nmap scan to be completed

because I blocked ICMP traffic. No pings mean no communication, and no communications means no

data for zenmap to display for me on the GUI. I have included screenshots below for future reference:

