

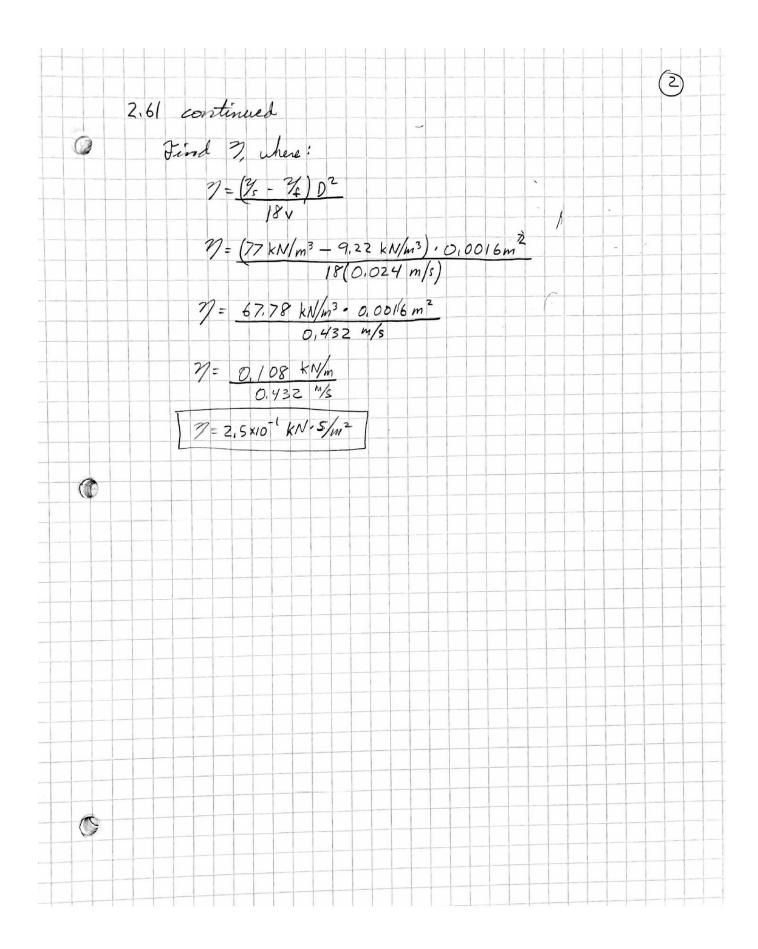
		- / /
HWK 1,1	Met 330	Carroll, Shaunmar K
2.17) Give four e Non-newtor	xamples of the types a	of fluids that are
- Afluid	that does not follow 1	lewton's law of viscosity
	$\gamma = \eta (\Delta v / \Delta \gamma)$	
Rin h (1-1	E albert	
. Bingham fluid -	Stand A Manager 1 4	Clopy that to derivate
- Thixotropic +	a viscous fluid that which must be exc flow	possesses a vield Strengtl eeded before the fluid will
 Thixotropic → 	Honey	
	Viscosity decreases c	with stress over time
 Rheopectiz → 	Cream	
	Viscosity increases u	with stress over time
, Dilatant 7	oobleck	
	Viscosity increases w	ith increased stress
1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4		

(1.9)

$$\int_{1}^{10^{10}} \int_{1}^{10^{10}} \int_{1}$$

"Appendix D gives dynamic viscosity for a variety of fluids as a function of temperature. Using this appendix, give the value of the viscosity for the following fluids:

2.18 Water at 40°C."


The viscosity of water at 40° C = 6.5 x 10^{-4} N*s/m²; as approximated from Appendix D in the course text.

"2.61 In a falling-ball viscometer, a steel ball 1.6 mm in diameter is allowed to fall freely in a heavy fuel oil having a specific gravity of 0.94. Steel weighs 77 kN/m3. If the ball is observed to fall 250 mm in 10.4 s, calculate the viscosity of the oil."

The viscosity of the oil is 2.5 x 10^-1 kN \ast s/m^2

(see attached sheets for solution)

Kevin Smith HW 1.1 2.61 9/7/2021 0 variables : 7 = viscosity $Y_{f} = specific weight of fluid$ V = volume of the sphere= 9,22 KN/m3 = 2,145 × 10 m3 D= diameter of the sphere = 0,0016 m SGF = specific gravity of the fluid = 0.94 v = fluid velocity = 0.024 m 3 = specific weight of steel ball = 77 KN/m³ = 0.024 m/s Ws = 77 KN/m3 1 Find %: 56 = 0.94 = 1/F = 2/ KM/m3 K/20 9/81 KM/m3 3/8 = 0,94. 9,81 K1/m3 3/4 = 9.22 kN/m3 Find V: $V = \frac{4}{7} T_{1}^{3} = \frac{4}{3} T_{1}^{3} \cdot 0.8^{3} = 2.145 \text{ mm}^{3}$ 2.145 mm³ -> 2.145 × 10 9 m³ Find V: $v = \frac{250}{10.45} = \frac{0.25}{10.45} = \frac{0.024}{10.45} m/s$ 10

