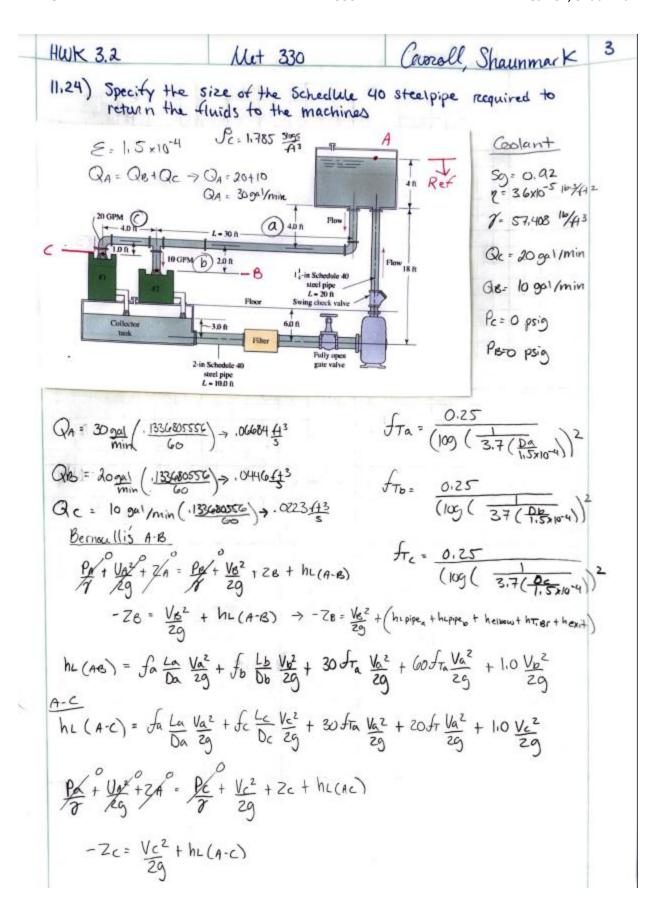
Chapter 11 and 12 overviewed the concepts of series, parallel and branching pipelines systems. With parallel and branching pipelines, we were introduced into more class 4 and 5 problems. Being able to identify in both pipelines how the fluids travel within different branches and how each brand can vary. Each branch effects the system in different ways and must be addressed separately, unless they are both identical. There are many factors that must be account for when fluid is traveling from a single point of origins into another through various branches and pipelines. Friction factors of the pipe, energy losses of each sub component such as elbows and valves must be accounted for. Depending on the unknown to solve for also requires the ability to identify when to use "iterations / guessing" vs when to work / manipulate equations for the required variable being solved for. Also, fluid velocity can vary within each branch due to different pipe sizes. Nodes must also be accounted for and identified and the flow of fluid going into a node must be equal to the flow exiting each of the same node. Circuit law must also be accounted for and reviewed and flow in a clockwise motion it is assumed to be positive, with counter clockwise being viewed as negative. Identifying and utilizing when to use the "Hardy Cross" method is also key when approaching situation when branches equal three or more. Overall, the homework assignments and the problems worked within class definitely were robust. It was mutinied to really slow down and take a look at what's going on and identify what's being see. Labeling is also important and is encouraged as problems can become complicated with various equations for Bernoulli's throughout. Patience and organization is important for problems with such complexity.

Carroll Shaunmark HWK 3.2 Met 330 11.23) For the system in Fig 11.26, compute total head on the pump and the power delivered by the pump to the coolant Inlet Pipe L= 10-14 Outlet Pipe L = 20ft 1 4 in schedule 40 Ø = 0.1150 ft A = 0.01039 ft² steel pipe L = 20 ftTapong = 20 gal Sg = 0.92 Fifty open gate value V=0; large tunks V=0; large tunks V=0; large tunks V=0E=1.5x104 P=0; open to atmosphere ha + 1 + 1 + 21 = 1 + 12 + 26 + he Qarico + Q1 = Q2 ha = hl + (26-21); hl. hontrance + hinlet + hatter + hquelve + hs walve + headlet + hexit (1-pump = U, A, > 30 gal (0.1336805556 ft) (1min = U, (.02333 ft) U1= 2.865 A2 October Qout = Vz Az > 30 gal (0.13368055564+3) (1min Gosec) = Vz (.0103942) Uz = 6,433 Az Scoolant = Swater x Sg > Scoolant = 1.94 slugs (.92) > Se = 1.785 slugs MR = VIDIC > 2.865(.1723)(1.785)

NR = 24476.3

NR · V2 D2 fc > 6.438(.1190)(1.785)

UR - 36661,5


he inlet =
$$\int \frac{L_1}{D_1} \frac{v_1^2}{2g} \Rightarrow 026 \left(\frac{10}{1723}\right) \left(\frac{2.865^2}{64.4}\right) \Rightarrow he inlet = 1923 ft$$

he outlet = $\int \frac{L_2}{D_2} \frac{v_2^2}{2g} \Rightarrow 025 \left(\frac{20}{11150}\right) \left(\frac{6.433^2}{64.4}\right) \Rightarrow houtlet = 2.794 ft$

hatter =
$$1.85 \left(\frac{V_1^2}{2g} \right) \rightarrow 1.85 \left(\frac{2.865^2}{64.4} \right) \rightarrow \text{ht. f. Her} = .2358ft}$$

minor hg. value = $8 f_7 \frac{V_1^2}{2g} \rightarrow 8(.019) \left(\frac{2.865^2}{64.4} \right) \rightarrow \text{hg. value} = .01937ft}$

$$P = \gamma Q \text{ ha} \rightarrow 57.408 \left(\frac{30 \text{ gal}}{\text{min}} \left(\frac{.1336805556}{60} \right) \right) 24.3$$

$$\Rightarrow 92.58 \text{ lb.} \frac{f_{1}}{5} \left(\frac{1 \text{ hp}}{550 \text{ lb.} 4} \right) \Rightarrow .168 \text{ hp}$$

HWK 3.2

Met 330

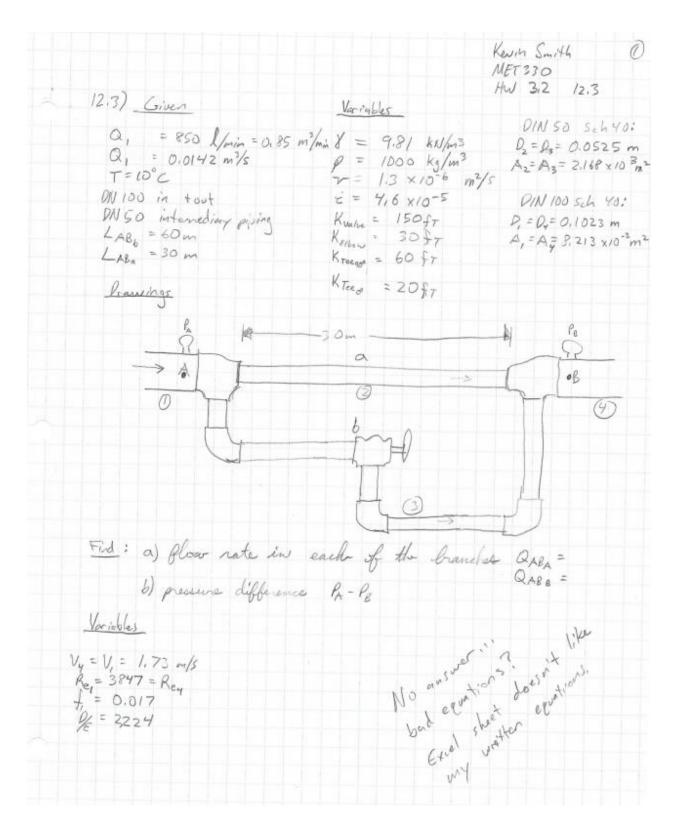
Caeroll, Shaunmark

NRb= 1.785 (400/1062) Db

NKC = 1.785 (40c/ADC2) DC

fa = 0.25/(log (/3,7 (Da/1,5x10-4) + 5.74/NRa 0.9) 2 fb = 0.25/(log (1/3,7 (Db/1,5x10-4) + 5.74/NRb 0.9) 2 fc = 0.25/(log (1/3,7 (Dc/1,5x10-4) + 5.74/NRc 0.9) 2

Bernoulli'S A-B

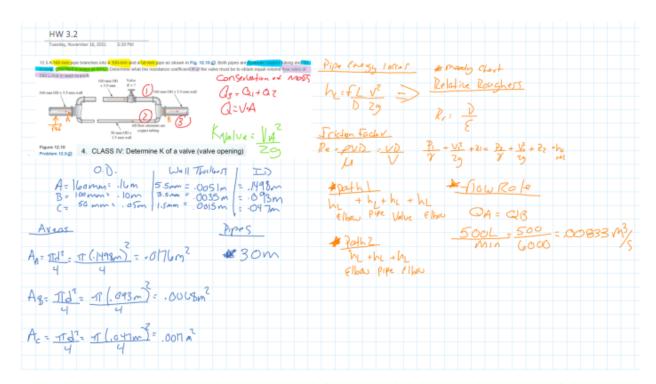

ZB = (da La 8 Qa² + db bb 80b² 17g Db4 + 30 da 8Qa² 17g Db4 + 60 da 8Qa² 17g Db4 + 40 da 17g Db4

Bernoullis A-C

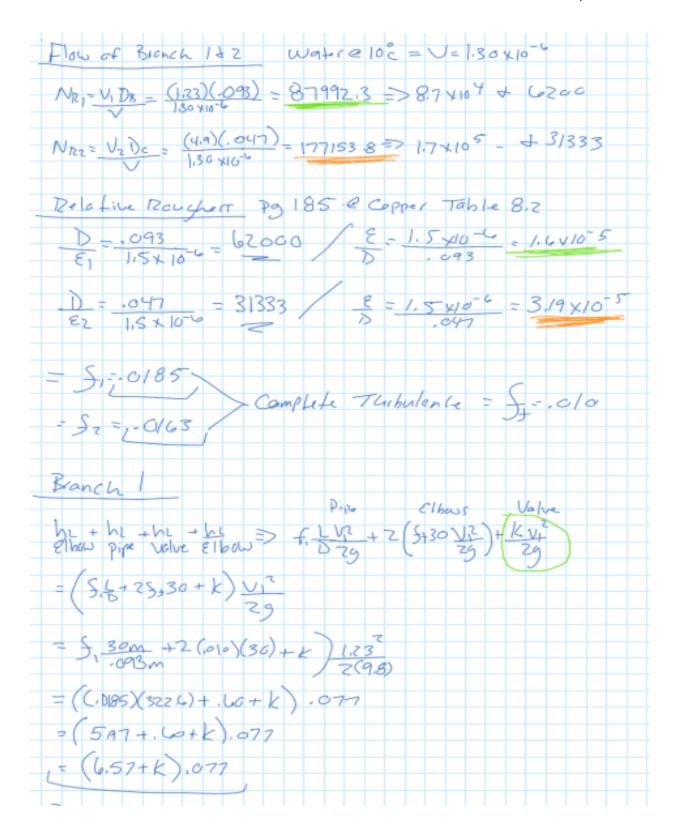
Zc = (fa La 80a² + Sc Le 80c² + 30 Sta 80a² + 20 Sta 80a² + 20 Sta 80a² + 7 g Da 4 + 20 Sta 80a² + 20 Sta 80a² + 20 Sta 80a² 17 g Da 4 + 8 Oc²) - 80c² 77 g Dc4

new to use excel, there is so much that can go wrong here. So I hope I can set this up correctly,

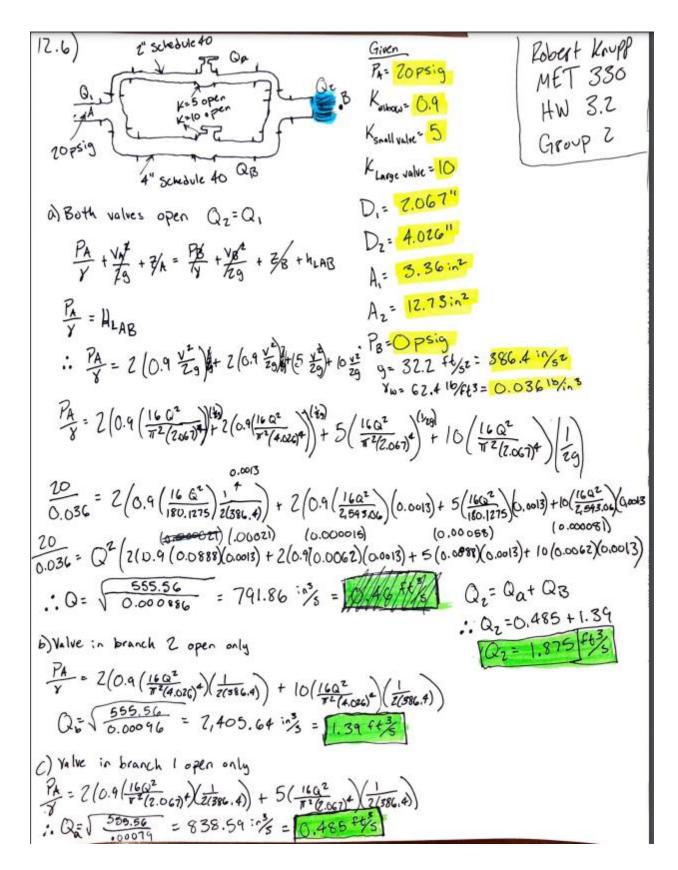
			Data										
	sg	0.92								- 1	elbow	T. Branch	
	ρ	1.7848	slugs/ft^3	0.0010329						12.84622			
	D. Viscosity	0.000036	1b*s/ft^2	2.5E-07	1b*s/in^2			2	2.575782	2.826559	0.056672	0.124658	2.442179
	Gamma	57.408	1b/ft^3	0.0332222	1b/ in^3			3		4511.799	0.056672	0.179476	625.1978
	Qc	10	gal/min	38.500576	in^3/sec				=				
	Qb	20	gal/min	77.001152	ft^3/sec								
	Qa	30	gal/min	115.50173	ft^3/sec								
	Zb	10	ft	120	in								
	Zc	9	ft	108	in					L,			
	La	34	ft	408	in								
	Lb	2	ft	24	in								
	Lc	5	ft	60	in								
	gravity	32.2	ft/s^2	386.4	in/s^2								
	Roughness	0.00015	ft	0.0018	in								
									New	old			
Iteration	Diameter a	Diameter b	Nra	NRb	fa	fb	fT a	fT b	Zb	Zb			
1	2	1.5	4860650.55	1367058	0.019245	0.020804	0.001914	0.002054	35.41149	120	3441%		
2	3	2	16404695.6	3240433.7	0.017449	0.01929	0.00174	0.001914	5.583671	120	458%		
3	3	0.5	16404695.6	50631.777	0.017449	0.030069	0.00174	0.002756	4514.611	120	451361%		
4										120			
5										120			
6										120			
							New	old					
Iteration	Diameter a	Diameter b	fa	fc	fT a	fT c	Zc	Zc					
1	2	1.5						108					
								108					
2								108					
3													
								108					
3								108 108					



Equations	
For section ABa:	
Pn + 3/n + 2/n + 2/3 = Pa + 3/2 + 2/3 + 2/3	£ + h_
$\frac{\rho_A}{y} - \frac{\rho_B}{y} = h_{L_{AB}}$	
Q, = Q4 = Q2 + Q3	
Q, = A, V,	
0.0142mg 8.213 ×153 m2 V,	
$h_L = f \frac{L}{D} \frac{V^2}{Zg}$	$R_e = \rho VO = VO = VO$
	Relative Koughness = P
	Rc = +000.1.73.0.1023 4.6 x10-5
	Re = 3847



	9
Equations for section ABb:	
Pr + 2/2 + V/2 = Pr + 2/4 + V/2 + he	
$\frac{P_1}{8} - \frac{P_4}{8} = h_2$	
$Q_1 = Q_2 = Q_2 + Q_3$	
Q, = A, V,	
3 Ry - Ry = (KTreqo . 5 16 Q1) + 3 (Kellow, 5 16 Q3) + (Kvalue . 5 16 Q3) + (Kvalue . 5 16 Q3) + (K Treqo	.5 16 Q2)
APAB = 60.754.43 Q, +3.30.754.43 Q3 + 150.754.43 Q3 + 60.75	4.43 Q4
APAB = 45265,8 Q, + 67898,7Q, + 1/3/64,5 Q, + 45265,8 Q, 9,81 Q = Qy :.	
$\frac{\Delta R_{AB}}{9.81} = 90531.6 Q_1^2 + 181063.2 Q_3^2$	
$\Delta P_{AB} = 18.255 + 181063.2 Q_3^2$ 9.81	
DRAB = 1,86 + 18457 Q3	
$ \frac{\Delta l_{A6}}{\sqrt{\frac{\Delta l_{A8} - 1.86}{18457}}} = Q_3 $	


											+
Input D	ata										
Specific Weight=	9.81	kN/m^3									
Kinematic Viscosity=	1.30€-06	m^2/s									
Pressure A=	0	kPa									
Pressrue B=	0	kPa									
Pipe length = L2 = L3=	60	m									
Pipe length = L1 = L4=	30	m									
D1=	0.1023	m									
D2=	0.0525	m									
D3=	0.0525	m									
Wall Roughness=	4.60€-05										
Le/D valve=	150										
Le/D tee90=	60										
Le/D tee0=	20										
Le/D elbow=	30										
D1/e=	2223.91										
D2/e=	1141.30										
D3/e=	1141.30										
				Q1=	0.0142	m3/s					
g=	9.81	m/s^2		-	0.00.10	1110/0					
8-	3.61	111/3-2	Iteration	1							t
			iteration					deltaP			
				Guess Q2 (m3/s)	V2 (m/s)	Re2	f2	/gamma (m)			
				0.007100	3.279818873	132454	0.02134	5.54159597			
					f3	Q3 (m3/s)	V3 (m/s)	Re3	f3	%diff	
					0.01	0.01412334303	6.524226339	2.63€+05	0.02035	103.5%	
					0.02035	0.01412334303	6.524226339	2.63€+05	0.02035	0.0%	
					0.02035	0.01412334303	6.524226339	2.63E+05	0.02035	0.0%	

Velocity A&B	
V1=Q = .00835m/S = 1.23 m/S AB .0068m? VZ=Q = 00833 m/S = 4.9m/S Ac .0017m2	As It = 1600 = 10000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000
Branch 1 hr + hr + hr + hr => fr L 1/2 elhow pipe valve & lbow => fr L 1/2 = fram +2 (frame => frame => fram	+ 2 (5+30 V12) + KV2 29
Branch 7 Pipe h_ +h_ +h_ => fz \(\frac{1}{2} \) = \(\frac{36m}{1047m} + 2 \) \(\frac{5}{30} \) = (38.3) \(\frac{1}{1} \) \(\frac{1}{2} \)	Ellous 2 + 2 (5+30 V22)

Branch Z
Sz= hz + hz + hz Elbow Pipe Elbow
= (2f30+f2) V22
$= (7(30)(.01) + .0163(30)) 4.9^{2}$ $= (.6 + .0165(638.3)) 1.73$
= (1) 1,23 - (11) 1,23
= 13.5
→ Head Loss Equation for Parallel Systems
B(anch) = B(anch)
(6.57+K),077 = 13.5
= .51+.077 K=13.5
= 1071k = 12.99 = K= 168.7

