WRITING RUBRIC (APPLIES TO THE WHOLE TEST, NOT TO PARTICULAR PARTS)

1.	Purpose	0.5/10.0 out of 0.5/10.0
2.	Drawings	1.0/10.0 out of 1.0/10.0
3.	Sources	1.0/10.0 out of 1.0/10.0
4.	Design considerations	1.0/10.0 out of 1.0/10.0
5.	Data and variables	0.5/10.0 out of 0.5/10.0
6.	Procedure	2.0/10.0 out of 2.0/10.0
7.	Calculations	2.0/10.0 out of 2.0/10.0
8.	Summary	0.5/10.0 out of 0.5/10.0
9.	Materials	0.5/10.0 out of 0.5/10.0
10.	Analysis	1.0/10.0 out of 1.0/10.0
	TOTAL	10.0/10.0 out of 10.0/10.0

Part 1a)

1.	Show drawing with Bernoulli's points and reference	1/8 out of 1/8
2.	Apply Bernoulli's, simplify it, and solve for "h"	0.75/8 out of 1/8
3.	Compute velocity with Q=VA	1/8 out of 1/8
4.	Compute pipe energy losses correctly (estimate L)	1/8 out of 2/8
5.	Compute minor energy losses correctly	0.5/8 out of 1/8
6.	Create spreadsheet with all calculations	0/8 out of 1/8
7.	Correct results?	0.25/8 out of 1/8

Part 1b)

1.	Select U-tube tubing diameter	0.25/6 out of 1/6
2.	Decide U-tube right leg length	0.5/6 out of 1/6
3.	Apply "gamma*h" equation and solve for "h" of Hg	1/6 out of 2/6
4.	Mass or volume of required mercury	0.75/6 out of 1/6
5.	Correct results?	0.25/6 out of 1/6

Part 1c)

1.	Compute transferred volume in 5 minutes	0.5/4 out of 1/4
2.	Use cylinder volume equation and get tank diameter	0.5/4 out of 1/4
3.	Compute percentage of the energy losses	0.5/4 out of 1/4
4.	Correct results?	0.5/4 out of 1/4

Part 2)			
1.	Use spreadsheet from "Part 1" to get "h" for diff Q		
	Make sure the K value or Leq value of valve changed		
	Make sure energy losses change when changing Q	0/8 out of 2/8	

2. Plot "h" vs Q
3. Read Q for "h" equal to the "h" in part 1
4. What is the new manometer reading?
5. %drop of the gasoline level after 10 minutes
6. Compute percentage of the energy losses
7. Correct results?
0/8 out of 1/8
0.5/8 out of 1/8
0.5/8 out of 1/8

FINAL GRADE:

10 + (80/4)*(4.5/8 + 2.75/6 + 2/4 + 2.5/8) = 46.7