Phishing Campaigns: Protection Against Credential Theft

Carl Lochstampfor Jr.

Department of Cybersecurity, Old Dominion University,

IT 315 – Introduction to Networking and Security

September 28, 2025

Instructions

Find an article related to cybersecurity. You can use an article with any topics related to cyber security. Write an analysis of the article. Please answer all the following questions.

- 1. What happened?
- 2. Who was involved?
- 3. Where did this occur?
- 4. How did this happen? (lapse in security, mistake, etc.)
- 5. What were the consequences/impacts? (individuals, legal, ethical, social, society, environment)
- 6. What was done to address or prevent this from happening again?
- 7. What are your suggestions to prevent this from happening again?
- 8. Do you think this could happen again and why?
- 9. What are the potential impacts including intended and unintended of cyber security on individuals, society, or the environment?

Online Article

Lakshmanan, R. (2025, April 14). *Phishing Campaigns Use Real-Time Checks to Validate Victim Emails Before Credential Theft*. The Hacker News. Retrieved from https://thehackernews.com/2025/04/phishing-campaigns-use-real-time-checks.html

Phishing Campaigns: Protection Against Credential Theft

What happened?

Threat actors are using a new, advanced form of credential phishing called Precision-Validating Phishing. Conventional phishing attacks (aka, "spray-and-pray" methods) send a massive number of emails in a blanket-style approach, akin to fishermen casting a wide "net," in hopes of duping as many netted victims as possible (Panko, 2020; Kim & Solomon, 2021; Simplilearn, 2024). However, Precision-Validating Phishing is selective, first checking the validity of a recipient's email addresses in real-time against a pre-harvested email database, and then presenting a fake login page to the victim (Lakshmanan, 2025). The strategy ensures that the attackers are targeting legitimate, high-value, and actively used email accounts. The new method streamlines attackers' efforts, making them more efficient at stealing usable credentials. This approach also helps it remain undetected by most modern automated cyber defense systems.

Who was involved?

The main parties involved are the threat actors who develop and deploy phishing campaigns. The other parties are the victims, usually corporate users and "whales," who are considered high-value targets. Although IT administrators utilize automated security crawlers and sandbox environments as a form of defense, these tools often struggle to analyze and protect against specific phishing attacks effectively.

How did this happen?

This sophisticated attack exploits a security vulnerability and breaches trust. Attackers utilize an API- or JavaScript-based script within their phishing kits to verify the email address in real-time as soon as a user enters it on a fake login page. If the email address matches a target in the threat actors' pre-harvested database, the phishing content immediately triggers to capture the user's login credentials (Lakshmanan, 2025). However, suppose the email does not exist in the attacker's data list. In that case, the page returns an error or redirects the user to a harmless site, such as Wikipedia, to evade detection. Another campaign described uses a malicious PDF link as bait, which leads users through a similar validation process that ends with a fake Microsoft login page or the download of malware.

What were the consequences/impacts?

The consequences of this attack include a higher success rate for the attackers and an increase in the value of the harvested data, as it is more likely to belong to real, active, and high-value accounts. These campaigns can last longer and evade detection because they only trigger in selective events (i.e., when an email matches the pre-harvested database) (Lakshmanan, 2025). That also means that cyber teams can no longer rely solely on dummy or test credentials in their security tools to analyze webpages and emails for malicious payloads.

What was done to address or prevent this from happening again?

Traditional defense methods that use dummy or test credentials to analyze phishing pages are ineffective against this new tactic because the phishing campaigns automatically (and upfront) reject any unrecognized email before delivering the phishing content/payload. To counter this, organizations need to shift their focus toward behavioral analysis and anomaly detection to identify these campaigns before they reach end-users. Studies have found that automated behavioral detection, combined with a mix of blacklisting and whitelisting, can more effectively block unauthorized applications and malware execution (Chen et al., 2017; Kumar et al., 2020; Turaev et al., 2022).

What are your suggestions to prevent this from happening again?

To prevent similar attacks, individuals and organizations should (Panko, 2020; Kim & Solomon, 2021):

- <u>Implement Multi-Factor Authentication (MFA):</u> This is the most effective way to prevent credential theft, as a stolen password alone is not enough to gain access to an account. The best forms of MFA include biometrics (something you are), geolocation (somewhere you are), and hardware or software tokens (something you have).
- <u>Conduct Security Awareness Training</u>: Regularly educate users to recognize phishing tactics (i.e., suspicious links or requests for sensitive information, including credentials). Unsolicited communication can be a significant "red flag,: even from a seemingly legitimate source, that requests personal information or encourages them to click on a strange or unknown link.
- <u>Utilize Advanced Email Filtering and Security Solutions with Screened/Border Subnets:</u> Implement Data Loss Prevention (DLP) tools to help identify and block malicious emails, links, and attachments before they reach the user's inbox.

Do you think this could happen again, and why?

Yes, this type of attack will likely happen again. Cybercriminals continually evolve their techniques and malware designs to bypass specific security measures and exploit human error.

What are the potential impacts of cybersecurity on individuals, society, or the environment?

Cybersecurity has both positive and negative effects (Panko, 2020; Kim & Solomon, 2021). The goal and effect is to help protect data and privacy from unauthorized access and manipulation. However, some unintended consequences include the burdensome inconvenience (or perception of it) for users when required to maintain additional security measures (e.g., having to remember complex passwords, conducting routine or weekly AV scans and patches on their workstations) or

an increase in stress levels about being targeted by attackers, such as the Sony Pictures 2014, Facebook, and Google phishing scams in 2013/2015.

For society, cybersecurity is crucial in safeguarding infrastructure, financial systems, and national security. However, one of its least favorable outcomes is the digital divide, because those who lack access to safe technology are increasingly more exposed. Industrial control system cyberattacks, although less obvious in terms of a direct link between the attack and environmental damage, can have very real-life consequences by disrupting services such as power grids that support critical infrastructure. On the other hand, cybersecurity also serves to ensure that systems for monitoring and controlling environmental resources are not compromised.

References

- Chen, Qian, & Bridges, Robert A. (2017). Automated behavioral analysis of malware: A case study of WannaCry ransomware. In X. Chen, B. Luo, F. Luo, V. Palade, & M. A. Wani (Eds.), Proceedings of the 16th IEEE International Conference on Machine Learning and Applications (ICMLA 2017) (pp. 454–460). Institute of Electrical and Electronics Engineers Inc. https://ieeexplore.ieee.org/document/8260673
- Kim, D., & Solomon, M. G. (2021). Fundamentals of information systems security (4th ed.). Jones & Bartlett Learning.
- Kumar, R., Ben-Othman, J., & Srinivasagan, K. G. (2020). An investigation on WannaCry ransomware and its detection. Electronics, 9(8), 1312. https://ieeexplore.ieee.org/document/8538354
- Lakshmanan, R. (2025, April 14). *Phishing Campaigns Use Real-Time Checks to Validate Victim Emails Before Credential Theft*. The Hacker News. Retrieved from https://thehackernews.com/2025/04/phishing-campaigns-use-real-time-checks.html
- Mamaril, M. (2025, April 9). *The Rise of Precision-Validated Credential Theft: A New Challenge for Defenders*. Cofense. Retrieved from https://cofense.com/blog/the-rise-of-precision-validated-credential-theft-a-new-challenge-for-defenders
- Panko, R. R., & Panko, J. L. (2020). Business data networks and security (11th ed.). Pearson. Simplilearn. (2024, September 30). Phishing attacks | What is a phishing attack | Phishing attack explained | Simplilearn [Video]. YouTube. https://www.youtube.com/watch?v=BhGWnSeNXq0
- Turaev, H., Zavarsky, P., & Swar, B. (2022). Prevention of ransomware execution in enterprise environment on Windows OS: Assessment of application whitelisting solutions. Journal of Cybersecurity, 8(1), tyac012. https://ieeexplore.ieee.org/document/8367748