MET 440 Heat Exchanger Design Project

Charboneau – Martin 12/12/2019

Abstract:

We have been hired to engineer a heat exchanger to meet the demands laid forth by the custom. The customer requirements are to cool 320,000 lb/hr of liquid Ammonia from 122°F to 86°F. To accomplish this cooling the heat exchanger will using liquid water at an initial temperature of 50°F. The owner has also listed some limits for the heat exchanger which we have to design around.

For our final design, we have a single-pass-in-shell, two-pass-in-tube, BEN Type Heat exchanger encompassing 574 tubes, 12 baffles, and meets all heat transfer and dimensional requirements.

Table of Contents

Abstract:	2
List of Figures and Tables:	6
Report Body:	7
Job Site location:	7
Specifications and Design Philosophy:	7
Sources:	7
Materials and Specifications:	12
Establish the HX materials to use:	12
Fluid Characteristics:	12
Preliminary Drawings and Sketches:	
Plot Plan:	13
Elevation:	13
Methodology:	14
Design Calculations:	19
Final Drawings:	20
Plot Plant:	20
Elevations View:	20
Isometrics:	20
Heat Exchanger Data Sheet:	
Discussion:	22
Final Remarks:	
Appendix:	

680

L. HAAR AND J. S. GALLAGHER

Appendix A. Table of Thermodynamic Properties

								Appendi	X A. Table o	f Thermodys	namic Prop		
Pressure	Temp.	emp. Specific volume			Free Internal energy			Enthalpy Latent					
bar	'С	Liquid cm ³ /g	Vapor cm ³ /g	energy G/RT	Liquid J/6	Vapor J/s	Liquid J/g	Vapor J/g	heat J/s	Liquid J/g K	Vapor J/g K		
		C46 /6	cm is	0/62	3/6	3/6	316	2/8	118	JUS IN	ang a		
.10	-71.22	1.37611	9803.87	-25.76	-1079.91	294.03	-1079.90	392.07	1471.9725	4.3553	11.6446		
.15	-65.59	1.38824	6705.39	-25.49	-1054.84	301.73	-1054.82	402.31	1457.1367	4.4777	11.4980		
.20	-61.37	1.39767	5122.56	-25.30	-1036.36	307.39	-1036.33	409.84	1446.1715	4.5659	11.3946		
.25	-57.96	1.40548	4157.58	-25.16	-1021.55	311.89	~1021.51	415.83	1437.3395	4.6353	11.3148		
.30	-55.08	1.41224	3505.96	-25.06	-1009.02	315.63	-1008.98	420.81	1429.7879	4.6931	11.2498		
.35	-52.58	1.41821	3035.50	-24,95	-998.16	318.84	-998.11	425.09	1423.1946	4.7426	11.1950		
.40	-50.36	1.42359	2679.37	-24.87	-988.47	321.66	-988.42	428.83	1417.2519	4.7863	11.1476		
.45	-48.35	1.42850	2400.12	-24.80	-979.76	324.17	-979.70	432.17	1411.8740	4.8252	11.1059		
.50	-46.52	1.43303	2175.09	-24.73	-971.78	326.43	-971.71	435.19	1406.8936	4.8606	11.0686		
-55	-44.84	1.43724	1989.76	-24.68	-964.44	328.49	-964.36	437.93	1402.2944	4.8929	11.0350		
.60 .70	-43.28 -40.45	1.44118	1834.39 1500.31	-24.63 -24.50	-957.60	330.39 333.77	-957.51 -945.11	440.45 444.96	1397.9643 1390.0605	4.9227	11.0043 10.9500		
.80	-37.94	1.45491	1401.97	-24.46	-934.15	336.73	-934.03	448.89	1382.9212	5.0236	10.9031		
.90	-35.67	1.46085	1255.81	-24.39	-924.15	339.36	-924.02	452.38	1376.4036	5.0659	10.8618		
1.00	-33.60	1.46636	1137.99	-24.33	-914.98	341.72	-914.84	455.52	1370.3578	5,1043	10.8249		
1.20	-29.91	1.47628	959.56	-24.23	-898.65	345.84	-898.47	460.99	1359.4575	5.1720	10.7610		
1.40	-26.69	1.48512	830.63	-24.14	-896.03	349.34	-896.47	465.63	1349.7414	5.2306	10.7071		
1.60	-23.83	1.49313	732.97	-24.07	-871.50	352.39	-871.27	469.67	1349.7919	5.2822	10.6605		
1.80	-23.65	1.50050	656,35	-24.01	-859.88	355.08	-859.61	473.23	1340.9339	5.3286	10.6194		
2.00	-18.86	1.50735	594.57	-23.95	-849.22	357.50	-848.91	476.42	1325.3286	5.3708	10.5826		
2.50	-13.66	1.52270	482.11	-23.83	-825.76	362.61	-825.38	483 14	1308 5221	5.4621	10.5048		
3.00	-9.24	1.53622	406.05	-23.74	-805.67	366.77	-805.21	488.58	1293.7924	5.5389	10.4412		
3.50	-5.36	1.54842	351.06	-23.67	-787.98	370.25	-787.44	493.13	1280.5667	5.6054	10.3873		
4.00	-1.89	1.55962	309.40	-23.60	-772.11	373.24	-771.48	497.01	1268.4875	5,6643	10.3406		
4.50	1.25	1.57003	276.70	-23.55	-757.66	375.85	-756.95	500.37	1257.3152	5.7173	10.2993		
5.00	4.13	1.57902	250.33	23,50	-744.36	370.14	-743.57	503.31	1246.0008	5,7655	10.2623		
5.50	6.80	1.58907	228,60	-23.46	-732.02	380.18	-731.15	505.92	1237.0629	5.8098	10.2288		
6.00	9.28	1.59788	210.37	-23.42	-720.48	382.01	-719.52	508.24	1227.7588	5.8509	10.1980		
6.50	11.61	1.60632	194.85	-23.38	-709.63	383.66	-708.59	510.32	1218.9063	5.8892	10.1697		
7.00	13.80	1.61442	181.47	-23.35	-699.37	385.16	-698.24	512.19	1210.4369	5.9251	10.1434		
7.50	15.88	1.62224	169.82	-23.32	-689.64	386.52	-688.43	513.89	1202.3129	5.9589	10.1188		
8.00	17.85	1.62980	159.57	-23.30	-680.37	387.76	-679.06	515.42	1194.4869	5.9909	10.0957		
8.50	19.73	1.63714	150.49	-23.27	-671.51	388.90	-670.12	516.82	1186.9347	6.0213	10.0739		
9.00	21.52	1.64427	142.38	-23.25	-663.02	389.94	-661.54	518.08	1179.6217	6.0502	10.0533		
9.50	23.25	1.65122	135.10	-23.23	-654.86	390.89	-653.29	519.24	1172.5316	6.0778	10.0338		
10.00	24.90 26.49	1.65801	128.51	-23.21	-647.00	391.77 392.58	-645.35	520.29	1165.6381				
10.50	28.03	1.66464	117.09	-23.19 -23.17	-639.43 -632.10	393.32	-637.68 -630.26	521.25 522.12	1158.9300	6.1296	9.9974		
11.50	28.03	1.67750	112.09	-23.17	-625.01	394.01	-623.08	522.92	1152.3867 1146.0001	6.1540	9.9803		
12.00	29.51 30.94	1.68376	107.50	-23.10	-618.14	391.61	-623.08	522.92	1146.0001	6.1776 6.2002	9.9640		
12.50	32.33	1.68990	103.26	-23.13	-611.46	395.21	-609.35	524.29	1133.6419	6.2222	9.9831		
13.00	33.68	1.69595	99.34	-23.13	-604.97	395.74	-602.77	524.89	1127.6510	6.2434	9.9331		
13.50	34.99	1.70190	95.69	-23.10	-598.66	396.23	-596.36	525.42	1121.7766	6.2640	9.9044		
14.00	36.26	1.70777	92.30	-23.09	-592.50	396.67	-590.11	525.90	1116.0077	6.2839	9.8908		
19.30	31,30	1.(1300	07.13	-23.07	-380.30	390.07	-384.02	323,90	1110.3408	6.3033	9,8908		
15.00	38.71	1.71926	86.17	-23.06	-580.64	397.45	-578.06	526.71	1104.7667	6.3221	9.8646		
15.50	39.89	1.72490	83.39	-23.05	-574.92	397.78	-572.24	527.04	1099.2826	6.3405	9.8522		
16.00	41.04	1.73048	80.78	-23.04	-569.32	398.08	-566.55	527.33	1093.8808	6.3584	9,8400		
6.50	42.16	1.73599	78.32	-23.03	-563.84	398.35	-560.98	527.58	1088.5591	6.3758	9.8282		
17.00	43.26	1.74145	76.00	-23.02	-558.48	398.59	-555.52	527.79	1083.3106	6.3928	9.8166		
7.50	44.33	1.74685	73.81	-23.01	-553.22	398.80	-550.16	527.97	1078.1341	6.4094	9.8054		
18.00	45.38	1.75220	71.74	-23.00	-548.07	398.98	-544.91	528.11	1073.0233	6.4257	9.7944		
8.50	46.41	1.75751	69.77	-22.99	-543.01	399.14	-539.76	528.22	1067.9769	6.4416	9.7836		
0.00	47.41	1.76276	67.00	22.00	E\$9.04	300.28	\$24.60	680.00	1060.9900	6.4671	9.7703		
19.50	48.40	1.76798	66.13	-22.98	-533.17	399.39	-529.72	528.34	1058.0612	6.4723	9.7628		
80.00	49.37	1.77316	64.44	-22.97	-528.37	399.47	-524.83	528.36	1053.1863	6.4872	9.7527		
21.00	51.25	1.78339	61.30	-22.96	-519.02	399.59	-515.28	528.31	1043.5911	6.5162	9.7331		
2.00	53.07	1.79350	58.43	-22.94	-509.97	399.62	-506.02	528.16	1034.1857	6.5441	9.7143		
3.00	39.83	1.80549	55.80	-22.93	-301.19	399.31	-497.04	327.91	1024.9537	6.5710	9.6961		
4.00	56.53	1.81336	53.38	-22.92	-492.65	399.46	-488.30	527.58	1015.8805	6.5970	9.6785		
5.00	58.18	1.82315	51.15	-22.91	-484.35	399.28	-479.79	527.16	1006.9531	6.6222	9.6614		
6.00	59.78	1.83285	49.08	-22.90	-476.26	399.04	-471.50	526.66	998.1600	6.6467	9.6448		
7.00	61.33	1.84248	47.17	-22.89	-468.37	398.74	-463.40	526.09	989.4904	6.6704	9.6287		
8.00	62.84	1.85205	45.38	-22.88	-460.67	398.39	-455.48	525.45	980.9351	6.6934	9.6130		
9.00	64.31	1.86156	43.71	-22.87	-453.14	397.98	-447.74	524.75	972.4852	6.7159	9.5976		
0.00	65.75	1.87102	42.15	-22.86	-445.77	397.52	-440.15	523.98	964.1328	6.7378	9.5827		
1.00	67.15	1.88045	40.69	-22.85	-438.55	397.02	-432.72	523.15	955.8708	6.7591	9.5680		
a.oo 3.00	60.61	1.00904	09.01	22.05	401.40	096.47	425.40	522.26	947.6924	0.7799	9.0007		
	69.84	1.89920	38.01	-22.84	-424.54	395.87	-418.27	521.32	939.5914	6.8003	9.5397		
	71.15	1.90855	36.79	-22.83	-417.73	395.23	-411.24	520.32	931.5621	6.8202	9.5259		
4.00													
4.00 5.00	72.42	1.91788	35.63	-22.82	-411.03	394.55	-404.32	519.28	923.5991	6.8397	9.5124		
34.00 35.00 36.00 57.00		1.91788 1.92720 1.93652	35.63 34.54 33.50	-22.82 -22.82 -22.81	-411.03 -404.45 -397.98	394.55 393.83 393.07	-404.32 -397.52 -390.82	519.26 518.18 517.04	923.5991 915.6975 907.8527	6.8397 6.8588 6.8775	9.5124 9.4991 9.4860		

J. Phys. Chem. Ref. Data, Vol. 7, No. 3, 1978

THERMODYNAMIC PROPERTIES OF AMMONIA

	THERMODYNAMIC F
for the Coexisting Phases of Liquid and	f Vapor

	C,	с,			C, Isothermal			$(dP/dT)_{p}$	Density		Pressure
Liquid .	Vapor	Liquid	Vapor	Liquid	Vapor	compres	sibility	bar/K	Liquid	Vapor	bar
J/g K	J/g·K	J/g∙K	J/g-K	J/g·K	J/g-K	Liquid bar ⁻¹	Vapor bar ⁻¹		g/cm*	g/cm"	
.5330	2.0048	3,3051	1.4996	4.5327	-5.4437	.000054	10.189	.00733	.72668	.000102	.10
4049	9 0936	8 2846	1 5116	4 4037	-5.2204	000063	6.806	01033	72033	.000149	.15
.3603	2.0409	3,2045	1.5227	4.3596	-5.0635	.000068	5.113	.01316	.71548	.000195	.20 .25
.3468	2.0569	3.1893	1.5331	4.3460	-4.9432	.000072	4.097	.01587	.71150	.000241	.25
.3441	2.0720	3.1797 3.1734	1.5428	4.3431 4.3466	-4.8454 -4.7635	.000075 .000078	3.419 2.935	.01848	.70512	.000285	.35
0027	Z.1000	0.1709	1.3320	9.3900	-1.0929	.0000000	2.900	.02046	.70245	.000025	. 10
.3598	2.1131	3.1639	1.5693	4.3583	-4.6312	.000081	2.289	.02586	.70004	.000417	.45
.3663	2.1256	3.1598	1.5774	4.3647	-4.5762	.000683	2.062	.02820	.69782	.000460	.50
.3739	2.1377	3.1561	1.5852	4.3721	-4.5268	.000084	1.877	.03050	.69578	.000503	.55
.3805	2.1495 2.1719	3.1523 3.1452	1.5927 1.6071	4.3785 4.3920	-4.4819 -4.4032	.000085 .000087	1.723	.03276 .05716	.69387 .69042	.000545	.60
4064	2.1990	3.1379	1.6206	4.4038	-4.3302	.000088	1.298	.04141	.68733	.000713	.80
4182	2.2132	3.1309	1.6334	4.4153	-4.2766	.000089	1.156	.04561	.68453	.000796	.90
.4286	2.2325	3.1237	1.6457	4.4254	-4.2192	.000091	1.042	.04964	.68196	.000879	1.00
4480	2.2688	3.1100	1.6686	4.4442	-4.1351	.000093	.872	05757	67738	.001042	1.20
4650	2.3026	3.0968	1.6897	4.4604	-4.0610	.000095	.750	.06517	.67335	.001204	1.40
.4802	2.3345	3.0842 3.0722	1.7095	4.4750 4.4882	-3.9979	.000097	.658	.07254	.66973	.001364	1.60 1.80
.5067	2.3933	3.0608	1.7455	4.5002	-3.9932	.000099 .000101	.587	.07971	.66644 .66342	.001524 .001682	2.00
.6864	2.6900	0.0008	1.7965	4.5272	0.7241	.000101	.330	.300000	.00392	.001002	2.50
.5607	2.5208	3.0124	1.8212	4.5508	-3.7174	.000109	.359	.11952	.65095	.002463	3.00
.5837	2.5772	2.9925	1.8537	4.5719	-3.6554	.000114	.309	.13495	.64582	.002848	3.50
6048	2.6302	2.9747	1.8835	4.5912	-3.6041	.000118	.273	.14985	.64118	.003232	4.00
.6247	2.6804	2.9588	1.9111	4.6092 4.6250	-3.5610 -5.5299	.000122 .000125	.244	.16431	.63693 .63298	.003614	4.50 5.00
.6613	2.7741	2.9314	1.9612	4.6420	-3.4917	.000130	.202	.19205	.62930	.004374	5.50
.6783	2.8183	2.9195	1.9841	4.6570	-3.4658	.000134	.186	.20549	.62583	.004754	6.00
.6949	2.8610	2.9086	2.0057	4.6715	-3.4405	.000138	.173	.21856	.62254	.005132	6.50
.7107	2.9026	2.8986	2.0264	4.6852	-3.4219	.000142	.161	.23149	.61942	.005510	7.00
.7262	2.9430 2.9825	2.8894 2.8808	2.0461 2.0649	4.6986 4.7114	-3.4020 -3.3888	.000146	.152	.24405	.61643 .61357	.005889 .006267	7.50 8.00
.7559	3.0211	2.8808	2.0649	4,7240	-3.3666	.000150	.195	.25655	.61357	.006267	8.00
.7702	3.0590	2.8654	2.1005	4,7360	-3.3639	.000158	.128	.28082	.60817	.007023	9.00
.7843	3.0962	2.8585	2.1173	4.7479	-3.3515	.000163	.122	.20256	.60561	.007402	9.50
.7981	3.1329	2.8521	2.1335	4.7593	-3.3456	.000167	.117	.30438	.60313	.007781	10.00
.8118	3.1690	2.8460	2.1492	4.7707	-3.3358	.000171	.112	.31580	.60073	.008161	10.50
.8252 .8386	3.2047 3.2400	2.8404 2.8351	2.1645 2.1792	4.7817 4.7926	-3.3326 -3.3251	.000175 .000179	.107	.32734	.59840	.008541	11.00
6017	3.2400	2.6301	2.1900	4.1920	-3.3290	.000179	.103	.33847	.59612	.008921	11.50
.8648	3.3095	2.8254	2.2076	4.8138	-3.3185	.000187	.096	.36061	.59175	.009684	12.50
.8777	3.3438	2.8209	2.2212	4.8241	-3.3192	.000192	.093	.37166	.58964	.010067	13.00
.8906	3.3779	2.8168	2.2345	4.8345	-3.3154	.000196	.090	.38230	.58758	.010450	13.50
1.9034 1.9163	3.4117 3.4454	2.8128 2.8092	2.2475 2.2602	4.8446 4.8548	-3.3175 -3.3153	.000200	.087 .084	.39313 .40356	.58556	.010834	14.00 14.50
.9290	3.4789	2.8056	2.2726	4.8647	-3.3187	.000209	.082	.41419	.58164	.011605	15.00
.9418	3.5122	2.8024	2.2848	4.8747	-3.3179	.000213	.080	.42443	.57974	.011992	15.50
.9545	3.5454	2.7992	2.2967	4.8846	-3.3223	.000217	.078	.43488	.57787	.012379	16.00
.9672	3.5786	2.7963	2.3084	4.8945	-3.3228	.000222	076	44495	57604	012268	16.50
.9799	3.6116	2.7935	2.3199	4.9043	-3.3282	.000226	.074	.45522	.57423	.013158	17.00
.9928	3.6446 3.6776	2.7909 2.7884	2.3311 2.3422	4.9141 4.9239	-3.3298 -3.3360	.000231 .000235	.072 .070	.46513 .47524	.57246 .57071	.013548 .013940	17.50
.0033	3.7105	2.7861	2.3531	4.9239	-3.3360	.000235	.070	.47524	.56899	.013940	18.00
.0313	3.7434	2.7838	2.3630	4,9434	3.3455	.000245	.067	.49497	.30899	.014333	19.00
.0443	3.7763	2.7818	2.3743	4.9533	-3.3493	.000249	.066	.50461	.56562	.015122	19.50
.0573	3.8093	2.7796	2.3847	4.9630	-3.3568	.000254	.065	.51441	.56397	.015518	20.00
.0835	3.8753	2.7762	2.4050	4.9827	-3.3695	.000264	.062	.53360	.56073	.016314	21.00
.1101	3.9414 4.0079	2.7730 2.7702	2.4248 2.4440	5.0025	-3.3836 -3.3991	.000274	060. 8 <i>0</i> 0.	.55254	.55757	.017115	22.00 23.00
.1646	4.0748	2.7678	2.4628	5,0426	-3.4158	.000294	.056	.58976	.55146	.017922	25.00
.1924	4.1421	2.7656	2.4812	5.0630	-3.4336	.000305	.054	.60805	.54850	.019550	25.00
.2209	4.2100	2.7638	2.4992	5.0837	-3.4526	.000316	.053	.62615	.54560	.020373	26.00
2498	4.9785	9 76/23	2 5168	5 1046	-3.4727	000327	051	64407	54975	021202	27.00
.2793 .3095	4.3476	2.7610	2.5340	5.1259	-3.4938	.000339	.050	.66181	.53994	.022037	28.00
.3095	4.4175 4.4882	2.7599	2.5510 2.5677	5.1475	-3.5159 -3.5391	.000351 .000363	.049 .048	.67939	.53718 .53447	.022877	. 29.00
.3403	4.9882	2.7591 2.7585	2.5677	5.1694 5.1917	-3.5391 -3.5631	.000363	.048	.69682 .71409	.53447	.023725 .024578	30.00 31.00
4040	9.5390	2.7501	2.5040	5.1917 5.2146	-3.5031	.000375	.047	.73122	.52915	.024578	31.00
4369	4.7059	2.7579	2.6161	5.2376	-3.6142	.000401	.045	.74821	.52654	.026306	33.00
4707	4.7805	2.7578	2.6317	5.2612	-3.6411	.000415	.044	.76507	.52396	.027181	34.00
.5052	4.8562	2.7580	2.6472	5.2852	-3.6690	.000429	.043	.78181	.52141	.028063	35.00
.5407	4.9332	2.7583	2.6624	5.3098	-3.6978	.000444	.042	.79843	.51889	.028952	36.00
.5770	5.0114	2.7587	2.6775	5.3348	-3.7276	.000459	.042	.81494	.51639	.029848	37.00
.6142	5.0910	2.7593	2.6923	5.3603	-3.7583	.000474	.041	.83134	.51391	.030753	38.00

J. Phys. Chem. Ref. Data, Vol. 7, No. 3, 1978

List of Figures and Tables:

Figure 1. Table 8.1 Dimensional Data for Commercial Tubing.	
Figure 2. Table 8.1 (Continued)	
Figure 3. Table 8.3 Tube-Shell Layouts.	9
Figure 4. Table 8.3 (Continued_1)	
Figure 5. Table 8.3 (Continued_2)	11
Figure 6. Table 8.3 (Continued_3)	11
Figure 7.One Pass Shell Preliminary Elevation Drawing.	13
Figure 8. Final Elevations View.	
Figure 9. Final Isometrics View	
Figure 10. Heat Exchanger Data Sheet.	
Figure 11. Heat Exchanger Effectiveness Graph	

Table 1. Fluid Characteristics.	1	2

Report Body:

Job Site location:

Local shipyard.

Specifications and Design Philosophy:

This heat exchanger is based on criteria prescribed by the test prompt. It is designed to efficiently use water to cool down liquid ammonia from its heated state of 122° F to 86° F. The tube material is of aluminum, the layout angle is 90° , and the pitch is square.

Sources:

Bayazitoglu, Y., Ozisik, N., "A Textbook for Heat Transfer Fundamentals", Begell House Inc (2012)

Kakaç, S., Liu, H., "Heat Exchangers Selection, Rating, and Thermal Design", CRC Press

Haar, L., Gallagher, J. S., "Thermodynamic Properties of Ammonia", National Measurement Laboratory

TABLE 8.1 Dimensional Data for Commercial Tubing

O.D. of Tubing (in.)	BWG Gauge	Thickness (in.)	Internal Flow Area (in. ?)	External Surface per Foot Length (ft ²)	Internal Surface per Foot Length (ft ²)	Weight per Ft Length, Steel (Ib)	I.D. Tubing (in.)	O.D./I.D. (in)
1/4	22	0.028	0.0295	0.0655	0.0508	0.066	0.194	1.289
1/4	24	0.022	0.0333	0.0655	0.0539	0.054	0.206	1.214
1/4	26	0.018	0.0360	0.0655	0.0560	0.045	0.214	1.168
3/8	18	0.049	0.0603	0.0982	0.0725	0.171	0.277	1.354
3/8	20	0.035	0.0731	0.0982	0.0798	0.127	0.305	1.233
3/8	22	0.028	0.0799	0.0982	0.0835	0.104	0.319	1.176
3/8	24	0.022	0.0860	0.0982	0.0867	0.083	0.331	1.133
1/2	16	0.065	0.1075	0.1309	0.0969	0.302	0.370	1.351
1/2	18	0.049	0.1269	0.1309	0.1052	0.236	0.402	1.244
1/2	20	0.035	0.1452	0.1309	0.1126	0.174	0.430	1.163
1/2	22	0.028	0.1548	0.1309	0.1162	0.141	0.444	1.126
5/8	12	0.109	0.1301	0.1636	0.1066	0.602	0.407	1.536
5/8	13	0.095	0.1486	0.1636	0.1139	0.537	0.435	1.437
5/8	14	0.083	0.1655	0.1636	0.1202	0.479	0.459	1.362

Figure 1. Table 8.1 Dimensional Data for Commercial Tubing.

O.D. of Tubing (in.)	BWG Gauge	Thickness (in.)	Internal Flow Area (in. ?)	External Surface per Foot Length (ft ¹)	Internal Surface per Foot Length (ft ²)	Weight per Ft Length, Steel (lb)	LD. Tubing (in.)	0.D./I.D (in)
5/8	15	0.072	0.1817	0.1636	0.1259	0.425	0.481	1.299
5/8	16	0.065	0.1924	0.1636	0.1296	0.388	0.49s	1.263
5/8	17	0.058	0.2035	0.1636	0.1333	0.350	0.509	1.228
5/8	18	0.049	0.2181	0.1636	0.1380	0.303	0.527	1.186
5/8	19	0.042	0.2298	0.1636	0.1416	0.262	0.541	1.155
5/8	20	0.035	0.2419	0.1636	0.1453	0.221	0.555	1.136
3/4	10	0.134	0.1825	0.1963	0.1262	0.884	0.482	1.556
3/4	11	0.120	0.2043	0.1963	0.1335	0.809	0.510	1.471
3/4	12	0.109	0.2223	0.1963	0.1393	0.748	0.532	1.410
3/4	13	0.095	0.2463	0.1963	0.1466	0.666	0.560	1.339
3/4	14	0.083	0.2679	0.1963	0.1529	0.592	0.584	1.284
3/4	15	0.072	0.2884	0.1963	0.1587	0.520	0.606	1.238
3/4	16	0.065	0.3019	0.1963	0.1623	0.476	0.620	1.210
3/4	17	0.058	0.3157	0.1963	0.1660	0.428	0.634	1.183
3/4	18	0.049	0.3339	0.1963	0.1707	0.367	0.652	1.150
3/4	20	0.035	0.3632	0.1963	0.1780	0.269	0.680	1.103
7/8	10	0.134	0.2892	0.2291	0.1589	1.061	0.607	1.441
7/8	11	0.120	0.3166	0.2291	0.1662	0.969	0.635	1.378
7/8	12	0.109	0.3390	0.2291	0.1720	0.891	0.657	1.332
7/8	13	0.095	0.3685	0.2291	0.1793	0.792	0.685	1.277
7/8	14	0.063	0.3948	0.2291	0.1856	0.704	0.709	1.234
7/8	16	0.065	0.4359	0.2291	0.1950	0.561	0.745	1.174
7/8	18	0.049	0.4742	0.2291	0.2034	0.432	0.777	1.126
7/8	20	0.035	0.5090	0.2291	0.2107	0.313	0.805	1.087
1	8	0.165	0.3526	0.2618	0.1754	1.462	0.670	1.493
1	10	0.134	0.4208	0.2618	0.1916	1.237	0.732	1.366
1	11	0.120	0.4536	0.2618	0.1990	1.129	0.760	1.316
1	12	0.109	0.4803	0.2618	0.2047	1.037	0.782	1.279
1	13	0.095	0.5153	0.2618	0.2121	0.918	0.810	1.235
1	14	0.083	0.5463	0.2618	0.2183	0.813	0.834	1.199
1	15	0.072	0.5755	0.2618	0.2241	0.714	0.856	1.167
1	16	0.065	0.5945	0.2618	0.2278	0.649	0.870	1.119
1	18	0.049	0.6390	0.2618	0.2361	0.496	0.902	1.109
1	20	0.035	0.6793	0.2618	0.2435	0.360	0.930	1.075
11/4	7	0.180	0.6221	0.3272	0.2330	2.057	0.890	1.404
11/4	8	0.165	0.6648	0.3272	0.2409	1.921	0.920	1.359
11/4	10	0.134	0.7574	0.3272	0.2571	1.598	0.982	1.273
11/4	11	0.120	0.8012	0.3272	0.2644	1.448	1.010	1.238
11/4	12	0.109	0.8365	0.3272	0.2702	1.329	1.032	1.211
11/4	12	0.095	0.8825	0.3272	0.2773	1.173	1.060	1.179
11/4	14	0.083	0.9229	0.3272	0.2838	1.033	1.084	1.153
11/4	16	0.065	0.9852	0.3272	0.2932	0.823	1.120	1.116
11/4	18	0.049	1.042	0.3272	0.3016	0.629	1.152	1.085
11/4	20	0.035	1.094	0.3272	0.3089	0.456	1.180	1.059
11/2	10	0.134	1.192	0.3927	0.3225	1.955	1.232	1.218
11/2	12	0.109	1.291	0.3927	0.3356	1.618	1.282	1.170
11/2	14	0.083	1.398	0.3927	0.3492	1.258	1.334	1.124
11/2	16	0.065	1.474	0.3927	0.3587	0.996	1.370	1.095
2	11	0.120	2.433	0.5236	0.4608	2.410	1.760	1.136
2	13	0.095	2.573	0.5236	0.4739	1.934	1.810	1.105
21/2	9	0.148	3.815	0.6540	0.5770	3.719	2.204	1.134

Dimensional Data for Commercial Tubing

21/2 9 0.145 3.515 Marchard Courtesy of Tubular Exchanger Manufacturers Association.

Figure 2. Table 8.1 (Continued).

Shell I.D.					
(in.)	1-P	2-P	4-P	6-P	8-P
/4-in. O.D. Tu	bes on 1-in. Trian	gular Pitch			
	37	30	24	24	
0	61	52	40	36	
2	92	82	76	74	70
31/4	109	106	86	82	74
51/4	151	138	122	118	110
71/4	203	196	178	172	166
91/4	262	250	226	216	210
11/4	316	302	278	272	260
3 1/4	384	376	352	342	328
5	470	452	422	394	382
7	559	534	488	474	464
9	630	604	556	538	508
1	745	728	678	666	640
3	856	830	774	760	732
15	970	938	882	864 986	848 870
17	1074	1044	1012	1100	1078
19	1206	1176	1128	1100	10/6
-in. O.D. Tub	es on 1 1/4-in. Tri	angular Pitch			
3	21	16	16	14	
.0	32	32	26	24	
12	55	52	48	46	44
13 1/4	68	66	58	54	5
15 1/4	91	86	80	74	7
17 1/4	131	118	106	104 136	12
191/4	163	152	140	136	16
21 1/4	199	188	170	212	203
23 1/4	241	232	212 256	252	24
25	294	282		296	28
27	349	334	302 338	334	31
29	397	376	430	424	40
31	472	454 522	486	470	45
33	538 608	592	562	546	53
35 37	674	664	632	614	59
37 39	766	736	700	688	67
3/4-in. O.D. 1	ubes on 1-in. Squ	we Pitch			
8	32	26	20	20	
10	52	52	40	36	
12	81	76	68	68	6
13 1/4	97	90	82	76	7
15 1/4	137	124	116	108	10
17 1/4	177	166	158	150	14
19 1/4	224	220	204	192	18
21 1/4	277	270	246	240	23
23 1/4	341	324	308	302	29
25	413	394	370	356	34
27	481	460	432	420 468	40
29	553	526	480		

Figure 3. Table 8.3 Tube-Shell Layouts.

TABLE 8.3 (CONTINUED) Tube-Shell Layouts (Tube Counts)

Shell I.D. (in.)	1-P	2-P	4-P	6-P	8-P
	657	640	600	580	560
3	749	718	688	676	648
	845	824	780	766	748
15 17	934	914	886	866	838
19	1049	1024	982	968	948
-in. O.D. Tubes		are Pitch			
	21	16	14		
8 10	32	32	26	24	
	48	45	40	38	36
2	61	56	52	48	44
31/4	81	76	68	68	64
51/4			96	90	80
71/4	112	112		122	116
19 1/4	138	132	128	152	148
21 1/4	177	166	158		
3 1/4	213	208	192	184	184
25	260	252	238	226	222
7	300	288	278	268	260
9	341	326	300	294	286
31	406	398	380	368	358
3	465	460	432	420	414
5	522	518	458	484	47.
37	596	574	562	544	530
39	665	644	624	612	60
3/4-in. O.D. Tub	es on 15/16-in.	Triangular Pitci	k .		
8	36	32	26	24	10
10	62	56	47	42	3
12	109	98	86	82	7
13 1/4	127	114	96	90	8
15 1/4	170	160	140	136	121
17 1/4	239	224	194	188	17
	301	282	252	244	23
19 1/4	361	342	314	306	29
21 1/4	442	420	386	378	36
23 1/4		506	468	446	43
25	532	602	550	536	52
27	637		640	620	59
29	721	692	766	722	72
31	847	822		852	82
33	974	938	878		95
35	1102	1068	1004	988	
37	1240	1200	1144 1258	1104 1248	107
39	1377 Tubes on 1 9/16-i			1040	
10	16	12	10	16	
12	30	24	22	16	1
13 1/4	32	30	30	22	-
15 1/4	44	40	37	35	3
17 1/4	56	53	51	48	-
191/4	78	73	71	64	
21 1/4	96	90	86	82	

Figure 4. Table 8.3 (Continued_1).

TABLE 8.3 (CONTINUED) Tube-Shell Layouts (Tube Counts)

Shell I.D. (in.)	1-P	2-P	4-P	6-P	8-P
23 1/4	127	112	106	102	96
25	140	135	127	123	115
27	166	160	151	146	140
29	193	188	178	174	166
31	226	220	209	202	193
33	258	252	244	238	226
35	293	287	275	268	258
37	334	322	311	304	293
39	370	362	348	342	336
1 1/2-in. O.D. 1	Tubes on I 7/8-in.	Square Pitch			
12	16	16	12	12	
13 1/4	22	22	16	16	
15 1/4	29	29	24	24	22
17 1/4	29	.39	34	32	29
191/4	50	48	45	43	39
21 1/4	62	60	57	54	50
23 1/4	78	74	70	66	62
25	94	90	86	84	78
27	112	108	102	98	94
29	131	127	120	116	112
31	151	146	141	138	131
33	176	170	164	160	151
35	202	196	188	182	176
37	224	220	217	210	202
39	252	246	237	230	224
1 1/2-in. O.D.	Tubes on 1 7/8-in.	Triangular Pil	ch		
12	18	14	14	12	12
13 1/4	27	22	18	16	14
15 1/4	26	34	32	30	27
17 1/4	48	44	42	38	36
19 1/4	61	58	55	51	48
21 1/4	76	78	70	65	61
23 1/4	95	91	86	80	76
25	115	110	105	98	95
27	136	131	125	118	115
29	160	154	147	141	136
31	184	177	172	165	160
33	215	206	200	190	184
35	246	238	230	220	215
37	275	268	260	252	246
39	307	299	290	284	275
1 1/4-in. O.D.	Tubes on 1 9/16-h	n. Triangular P	iitch		
10	20	18	14		
10	20	18	14	22	~
12 1/4	32	30	26	22	20
13 1/4	38	36	32	28	20
15 1/4	54	51	45	42	38
17 1/4	69	66	62	58	
	69 95 117	66 91 112	62 86 105	78 101	54 65 95

Figure 5. Table 8.3 (Continued_2).

Tube-Shell Layouts	(Tube Counts)	
--------------------	---------------	--

Shell I.D. (in.)	1-P	2-P	4-P	6-P	8-P	
23 1/4	140	136	130	123	117	
25	170	164	155	150	140	
27	202	196	185	179	170	
29	235	228	217	212	202	
31	275	270	255	245	235	
33	315	305	297	288	275	
35	357	348	335	327	315	
37	407	390	380	374	357	
39	449	436	425	419	407	

From Kern, D. Q. (1950) Process Heat Transfer, McGraw Hill, New York. With permission.

Figure 6. Table 8.3 (Continued_3).

Materials and Specifications:

Establish the HX materials to use:

The tubes are made out of aluminum tubing to ensure that the ammonia and water do not mix. Using aluminum tubes instead of copper will also ensure that the tubes will last longer.

Property	Unit	WATER	AMMONIA
Temperature (In)	°C	10	50
Temperature (Out)	°C	26.67	30
Bulk Temperature	°C	18.33	40
Density, ρ	Kg/m^3	580.99	999
Specific Heat, Cp	J/kg/K	4184.8	4999
Thermal Conductivity	W/m/K	0.493	0.593
Mass Flow Rate, m	kg/s	57.8	40.32
Dynamic Viscosity	Pa*s	3.40E-7	1.07E-3
Film Dynamic Viscosity	Pa*s		1.012E-3

Fluid Characteristics:

Table 1. Fluid Characteristics.

Preliminary Drawings and Sketches:

Plot Plan:

Nothing is known of the location other than that it is a shipyard. The layout schematics were not given, so we did not create a plot plan.

Elevation:

Below is a preliminary drawing of the heat exchanger.

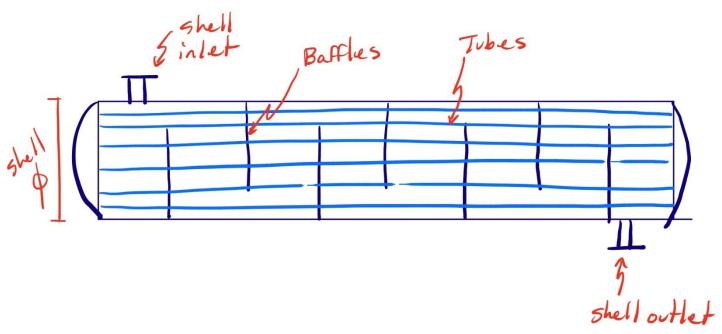


Figure 7. One Pass Shell Preliminary Elevation Drawing.

Methodology:

Start with the following equation:

$$Q = \dot{m}C_p \Delta T$$

The Q value solved for in the above equation is then put into the following equation:

$$Q = U_o A_o M L DT * F$$

Where:

$$U_{o} = assumed \ value \ from \ Table \ 8.5 \ of \ Heat \ Exchanger \ Tables \\ (Ammonia \ to \ water \ is \ 1000 \ to \ 2500) \\ A_{o} = Outer \ surface \ area \ of \ the \ tubes \ that \ we \ need \ to \ solve \ for \\ MLDT = \frac{\Delta T_{1} - \Delta T_{2}}{\ln\left(\frac{\Delta T_{1}}{\Delta T_{2}}\right)} = computed \ based \ on \ counter \ flow \ HX$$

F = Correction factor

The correction factor above was located in Supplemental Materials Bergman HEAT TRANSFER: Figure 11S.3

Once A_o is solved for, use it to solve for the number of tubes required in the heat exchanger by using the following equation:

$$A_o = \pi D_o L * N_t$$

Where:

$$L = Selected \ length \ of \ the \ tubes$$

$$D_o = Selected \ outer \ diameter \ of \ the \ tubes \ from \ Table \ 8.1$$

$$N_t = Calculated \ number \ of \ tubes$$

From the number of tubes calculated (which is not a permanent number), we were directed to Table 8.3 where we selected a shell diameter and number of passes. The option we selected was 1-in. O.D. Tubes on 1 ¹/₄-in. Square Pitch. We selected this size because it is the most common tube diameter in the industry. We then selected 23.25 inches for our shell I.D. and 208 as our number of tubes for a single pass of tubes in shell (these values were subject to change with the iterations to come). We initially designed the heat exchanger with a shell ID as close to 24 inches as possible because that is the maximum size in the industry before fabrication is required.

The baffle spacing was the next step in the design process. Using the equation below, we found a range for the distance between each baffle and from that range of numbers we selected a suitable value.

$$0.4D_s < B < 0.6D_s$$

Where:

$$D_s$$
 = Diameter of the shell selected in the above process (23.25 in = 0.5906m)

The required number of baffles was also calculated from the range calculated above. We divided the overall length of the tubes by the selected baffle spacing of 0.343m and rounded up to the nearest whole number of baffles, which was 16 baffles (this was subject to change).

With the new number of tubes from Table 8.3, we recalculated A_o and A_i using the previous equations used:

$$A_o = \pi D_o L * N_t$$
$$A_i = \pi D_i L * N_t$$

Where:

 A_i = Inner surface area of the tubes that we need to solve for D_i = Inner tube diameter

The next step was to start calculating resistances, beginning with h_i . To do this, we needed the velocity of the ammonia inside of the tubes by using the following equations:

 $\dot{m}_{ammonia} = \rho_{ammonia} * V_{ammonia} * A_{internal flow}$

$$A_{internal\ flow} = \frac{\pi}{4} D_i^2 * \left(\frac{N_{tubes}}{N_{passes}}\right)$$

Where:

$$d_i = 0.0221m,$$
 $A_{internal\ flow} = 0.055m^2,$ $\rho_{ammonia} = 580.99\frac{kg}{m^3}$

With the above values, we computed the ammonia velocity inside the tubes to be $1.25 m^2$. With this value, we are now able to calculate Reynold, Prandtl, and Nusselt numbers using the following equations:

$$Reynold's = \frac{Velocity_{ammonia} * D_i}{Viscosity_{ammonia}} = 81666$$
$$Nusselt's = 0.023Re^{0.8}Pr^{0.3} = 240.8$$

Where:

Pr = 2.00 = Value obtained in the back of the textbook

Now that we have the above values, we can pair Nusselt's with the thermal conductivity (k) of ammonia to compute the heat transfer coefficient inside the tubes (h_i) , using the following:

$$h_i = \frac{Nu * k_{ammonia}}{D_i} = 5372.4 \frac{W}{m^2 * K}$$

With the discovery of h_i , the last piece we needed to solve for the resistances was h_o (the heat transfer coefficient outside the tubes).

To find h_o , we needed the following equation from the heat exchanger tables (equation 8.11):

$$\frac{h_o D_e}{k} = 0.36 \left(\frac{D_e G_s}{\mu}\right)^{0.55} \left(\frac{C_p \mu}{k}\right)^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w}\right)^{0.14}$$

Where:

$$D_{e} = \frac{4\left(P_{T}^{2} - \frac{\pi D_{o}^{2}}{4}\right)}{\pi D_{o}} = 0.036m$$
$$G_{s} = \frac{\dot{m}}{A_{s}} = 1228.95 \frac{kg}{m^{2} * s}$$
$$A_{s} = \frac{D_{s}CB}{P_{T}} = 0.047m^{2}$$

C = Clearance between tubes in the heat exchanger = Pitch size - Tube O.D.

 $D_s = Shell \, diameter$ $B = Baffle \, spacing$ $P_T = Pitch \, size$ $\dot{m} = Mass \, flow \, rate$ $C_p = Specific \, heat \, of \, water$ $\mu = Dynamic \, viscosity \, of \, water$ $k = Thermal \, conductivity \, of \, water$ $\mu_b = Bulk \, temperature \, viscosity$ $\mu_w = film \, temperature \, viscosity$

Using the above equations and values, our initial value for h_o is:

$$h_o = 4025 \frac{W}{m^2 * K}$$

After finding h_o , we needed to find the wall resistance R_w .

$$R_w = \frac{\ln\left(\frac{D_o}{D_i}\right)}{2\pi kL} * \left(\frac{1}{N_{tubes}}\right) = 6.876 * 10^{-8} \, K/W$$

With our given fouling factors for water and ammonia () coupled with our computed values for h_o , h_i , A_o , A_i , and R_w , we can finally calculate a new value for U_o , which we will then use to compute a new value of Q, and compare that new Q value to the original Q calculated from the ammonia to the water at the beginning and reiterate the entire process above. We will do this till the Q percentage difference is less than 10%.

To compute $U_{o_{new}}$, use the following:

$$\frac{1}{U_{o_{new}}} = \frac{A_o}{A_i} \left(\frac{1}{h_i} + R_{f_i} \right) + A_o R_w + R_{f_o} + \frac{1}{h_o}$$

Where:

 $A_o = Tube \ outer \ surface \ area$ $A_i = Tube \ inner \ surface \ area$ $h_i = heat \ coefficient \ inside \ the \ tubes$ $R_{f_i} = Fouling \ factor \ inside \ tubes \ (ammonia)$ $R_w = Wall \ resistance$ $R_{f_o} = Fouling \ factor \ outside \ tubes \ (water)$ $h_o = heat \ coefficient \ outside \ the \ tubes$

With this newly calculated value, $U_{o_{new}} = 974.9 \frac{W}{m^{2} * K}$, we were able to compute a new Q value using the equation stated at the beginning of this section:

$$Q_{new} = U_{o_{new}}A_oMLDT * F = 2245826 W$$

With this new Q, we did a percent difference calculation between this Q and the Q that needs to be transferred from the ammonia to the water.

$$\% Diff = \frac{Q - Q_{new}}{Q} * 100\% = 44.3\%$$

With this percent difference, we knew that we needed to reiterate the process in order to get the percent difference as close to zero as we can.

Per requirements we had to calculate the pressure drop on the shell side and on the tube side. The equations used to determine these pressure drops are the following, respectively:

$$\Delta p_s = \frac{fG_s^2(N_b + 1) \cdot D_s}{2\rho D_e \varphi_s}$$
$$\Delta p_t = 4f \frac{LN_p}{D_i} \rho \frac{U_m^2}{2}$$

Where:

$$f = \exp(0.576 - 0.19ln * Re_s)$$

$$400 < Re_s = \frac{G_s D_e}{\mu} \le 1 * 10^6$$

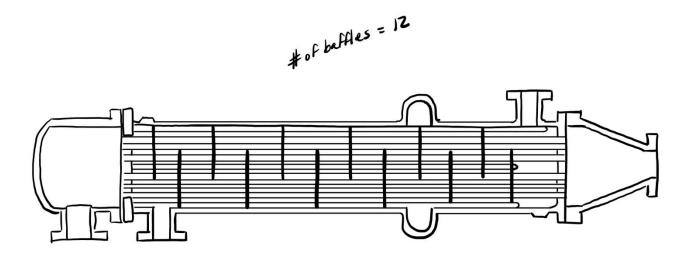
$$\varphi_s = \left(\frac{\mu_b}{\mu_w}\right)^{0.14}$$

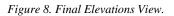
$$N_b = Number of baffles$$

$$L = Length of the heat exchanger$$

 $N_p = Number of tube passes$

Design Calculations:


See the attached MS Excel Spreadsheet for the calculations done for this project.


Final Drawings:

Plot Plant:

Nothing is known of the location other than that it is a shipyard. The layout schematics were not given, so we did not create a plot plan.

Elevations View:

Isometrics:

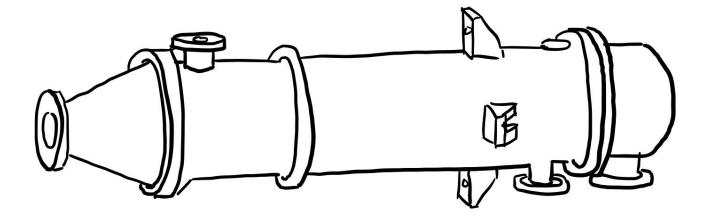


Figure 9. Final Isometrics View.

						SHELL-A	ND-TUBE	HEAT EXC	HANGER	
					CLIENT Shipya	6	EQUIP. NO		PAGE	1
REV	PREPARED BY	DATE	APP	ROVAL	W.O.		REQUISITIO	ON NO.	SPECIFICA	TION NO.
0	12/12/19	12/12/19								
1					UNIT	AREA	PROCUREL	DBY	INSTALLED	BY
2										
	Size 24H	TEMA Ty	/pe 🏌	3EM		Connected	in (series/para		I/A	
	Surface per Unit	2880	ft²	Shells pe		1 shell	Surface per	Shell 21	0	ft²
3				Pe	erformance o					
	Fluid Allocation					I Side		Tube		
	Fluid Name				Wat			Amm		
	Flow Total	lb/h	(: (+))		45871			3200	00	
8	Vapor Liquid	lb/h lb/h	(in/out)		45000	1		200.000		
			(in/out)		458711	45B7/1		320.000	320,000	
10 11	Steam Water	lb/h lb/h	(in/out)		_			_		
12	Noncondensable	lb/h	(in/out) (in/out)				+			
	Temperature (In/Out)	°F	(in/out)		50	80	+	122	86	
	Density	lb/ft3	(mout)		949	80	-	580.19	00	
	Viscosity	cP			1.01Z			0.00034		
	Molecular Weight, vap									
	Specific Heat	Btu/lb-°F			0.9995		1	1.1940		
	Thermal Conductivity	Btu/h-ft-°			0.343			0.285		
	Latent Heat	Btu/lb					. ·			
20	Inlet Pressure	psigg	(inlet)							
	Velocity	ft/s			2.0	7		2.15		
22	Press Drop Allow/Calo				2.83			0.725		
	Fouling Factor	ft²-h-°F/E	Btu		0.000	2			000	
	Heat Exchanged	Btu/hr			3,784,270		LMTD (corre	ected) °F	67.03	
	Service Coeff.	Btu/h-ft ² -	۰°F	Dirty			Clean			
26					ruction Data					
27	Desire/Test Dess	nalas	She	II Side	Tube	e Side	Sketch			
	Design/Test Press Design Temperature	psigg °F	-				-			
1.0000000000000000000000000000000000000	No. Passes per Shell	F				2	-			
	Corrosion Allowance	in	-	I		6	-			
32	In						-			
33	Connections Size				l		-			
34	& Rating	termediate					-			
35	Tubes No.	74 OD, in	1	Gauge	16	Length, ft.	18	Pitch layout,	deg. Severe	10.
	Туре	E				luminum		Pitch ratio	1.25	
36			38.2	ID, in	37	Material				
	Shell		30.0			Wateriai				
37 38	Shell Channel or Bonnet		40	Thick	1.5 m	Channel Co	over Inter	gral		
37 3 38 0	Shell	OD, in		Thick		Channel Co		g~1		
37 3 38 0 39 1 40 1	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover	OD, in 6 OD, in M			1.5 m	Channel Co		,		
37 3 38 0 39 1 40 1 41 1	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe	OD, in 6 OD, in M		% Cut (d) 50	Channel Co Impingeme	nt Protection	y مرا Spacing C/C	, in 18.5	
37 3 38 0 39 1 40 1 41 1 42 1	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long	OD, in 6 OD, in M		% Cut (d Seal Typ) 50	Channel Co		Spacing C/C	, in 18.5	
37 3 38 39 40 4 41 4 42 4	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube	OD, in 3 OD, in M r) 12		% Cut (d) 50	Channel Co Impingeme	nt Protection	,	, in 16.5	
37 3 38 39 40 4 41 4 43 3 44 4	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube Bypass Seal Arranger	OD, in 3 OD, in M r) 12		% Cut (d Seal Typ) 50	Channel Co Impingeme 1 Tube-Tubes	nt Protection	Spacing C/C	, in 18.5	
37 3 38 39 40 4 41 4 42 4 43 3 44 4 45 4	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube Bypass Seal Arranger Expansion Joint No.	OD, in 3 OD, in M r) 12		% Cut (d Seal Typ U-Bend) 5 0 e No	Channel Co Impingeme	nt Protection	Spacing C/C	, in 16.5	
37 38 38 39 40 41 42 43 43 44 45 46	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube Bypass Seal Arranger Expansion Joint No. Rho-V2-Inlet Nozzle	OD, in 3 OD, in M r) 12		% Cut (d Seal Typ) 5 0 e No	Channel Co Impingeme 1 Tube-Tube: Type	nt Protection	Spacing C/C	, in 18.5	
37 3 38 39 40 4 41 4 42 4 43 3 44 4 45 4 46 47	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube Bypass Seal Arranger Expansion Joint No. Rho-V2-Inlet Nozzle Gaskets - Shell Side	OD, in 3 OD, in M r) 12		% Cut (d Seal Typ U-Bend) 5 0 e No	Channel Co Impingeme 1 Tube-Tube Type Tube Side	nt Protection	Spacing C/C	, in 16.5	
37 38 39 40 41 41 42 43 43 34 44 45 46 47 48 48	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube Bypass Seal Arranger Expansion Joint No. Rho-V2-Inlet Nozzle Gaskets - Shell Side Floating Heat Cover	OD, in 3 OD, in M r) 12		% Cut (d Seal Typ U-Bend) 5 0 e No	Channel Co Impingeme 1 Tube-Tube Type Tube Side Supports	nt Protection	Spacing C/C	, in 16.5	
37 38 38 39 40 4 41 4 42 4 43 3 44 4 45 4 46 4 48 4	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube Bypass Seal Arranger Expansion Joint No. Rho-V2-Inlet Nozzle Gaskets - Shell Side Floating Heat Cover Code Requirements	OD, in B OD, in M r) 12 ment		% Cut (d Seal Typ U-Bend Bundle E) 5C e No Entrance	Channel Co Impingeme 1 Tube-Tube Type Tube Side	nt Protection	Spacing C/C Type Bundle Exit	, in 18.5	
37 38 38 39 40 4 41 4 42 4 43 3 44 4 45 4 46 4 47 4 48 49 50 50	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube Bypass Seal Arranger Expansion Joint No. Rho-V2-Inlet Nozzle Gaskets - Shell Side Floating Heat Cover	OD, in B OD, in M r) 12 ment		% Cut (d Seal Typ U-Bend) 5C e No Entrance	Channel Co Impingeme 1 Tube-Tube Type Tube Side Supports	nt Protection	Spacing C/C	, in 18.5	
37 38 38 39 40 41 41 42 42 43 43 3 44 45 46 47 48 49 50 51	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube Bypass Seal Arranger Expansion Joint No. Rho-V2-Inlet Nozzle Gaskets - Shell Side Floating Heat Cover Code Requirements Weight per shell Ib	OD, in B OD, in M r) 12 ment		% Cut (d Seal Typ U-Bend Bundle E) 5C e No Entrance	Channel Co Impingeme 1 Tube-Tube Type Tube Side Supports	nt Protection	Spacing C/C Type Bundle Exit	, in 18.5	
37 38 39 39 40 4 41 4 42 4 43 3 44 4 45 4 46 4 47 4 48 49 50 51	Shell Channel or Bonnet Tubesheet Type Floating Heat Cover Baffles Cross (numbe Baffles Long Supports Tube Bypass Seal Arranger Expansion Joint No. Rho-V2-Inlet Nozzle Gaskets - Shell Side Floating Heat Cover Code Requirements	OD, in B OD, in M r) 12 ment		% Cut (d Seal Typ U-Bend Bundle E) 5C e No Entrance	Channel Co Impingeme 1 Tube-Tube Type Tube Side Supports	nt Protection	Spacing C/C Type Bundle Exit	, in 18.5	

 $\frac{1}{2}$

Ð

Figure 10. Heat Exchanger Data Sheet.

Discussion:

We went through four different iterations of this heat exchanger. Our resulting percentage difference was well below the minimum threshold of 10%. Our pressure drop from the shell inlet to the shell outlet was 2.83 psi. The pressure drop from the tube inlet to the tube outlet was 0.725 psi.

Our effectiveness was computed once we were completely finished with the iterative process and we were satisfied with our results. We used the below chart to calculate our effectiveness:

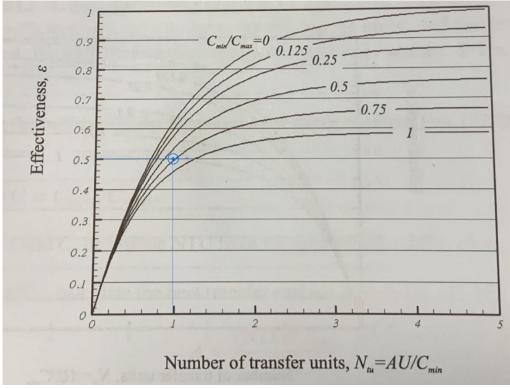


Figure 11. Heat Exchanger Effectiveness Graph.

Final Remarks:

The results told us that the effectiveness was average, which means we did it right. The overall heat transfer coefficient value went down, which caused the Q (heat transfer value) to increase and then level off with the target Q value.

Appendix:

- Do you think what you learn is important for your professional career?
 - Noah: Absolutely. It does not even have to be heat transfer material for it to be important for my professional career. Everything from sitting and listening in class, to networking with the professor and classmates is important for my professional career.
- Where do you think you will be using everything you learned?
 - Graham: In terms of heat transfer, I do not think that I will use all of the principles that I've learned in my life as soon as I leave college. I will certainly use the methods of critical thinking and perseverance that I learned in this class every day in my professional life.
- How would you explain the project and your contribution to the project in a job interview?
 - Noah: I would explain the project as a culmination of the principles learned in this course. I contributed by taking good notes and by pulling the report together in a clear and cohesive format.
- How would you explain how your strengths helped you contribute to the project in a job interview?
 - Graham: I don't have many strengths when it comes to this subject material. I know how to ask questions and am competent enough to understand this material, but it the understanding comes to me after lots of work and perseverance. It does not come to me naturally; I have to work very hard on it in order to make any headway.
- How would you explain in a job interview how your weaknesses affected your ability to work on this project and how did you address them (or what part of the class helped you address them)?
 - o Noah:
- Explain the technical strengths and weaknesses in your project.
 - Graham: My technical strength was the report and overall formatting. I did contribute to the calculations, but I made a few mathematical mistakes when I was directly involved with the equations.
- If you were starting the class over again, what advice would you give yourself to ensure that you had a successful semester and a successful final project?
 - Noah: Take very detailed notes, go to every single class, and don't be afraid to ask questions of the professor or the other students. Make friends in the class and work on the homework assignments together, as this will help you complete them on time and helps build good working relations for the future.