Reflection

The first problem:

First of all, the main difference of my equation and the answer is that I included a reduction fitting on mine and the value of the gate value I used is 150fT. My first Q1 = 4.51, Q2 = 3.36, and Q3 =1.15. I think I probably switch a conversion somewhere which made me have 10^3. My reasonable assumptions and application of Bernoulli's were correct as well as my third equation. The equation is similar too in addition of the reduction fitting and the valve value. I handle my minor losses well as well. I carry everything over correctly. I would not have exactly the same exact assumption, but I want to say, it was handled correctly. I probably put the equation incorrectly. Thus, end up increasing the decimal points. I think my conversion had minor problem along the way which made my numbers a bit higher than usual. Because of that my assumption were incorrect. I did not know the system is not bad. I thought it was bad. The value is not far off if I put the decimal point in the correct location. The conclusion is not entirely ruined. I think I still should have an 85-90. Compared to the other 2 test, I did not feel discourage on this one and I even sent my first pretest submission. Having 100% similar to the answer test is insane. I mean, I did not see any reduction on the correct answer. Not all the fitting is accountable. We do not know where the critical velocity is accountable too. All we are doing is assuming. If I, could I think I could ask someone else to verify my calculation. I believe I accidentally put something on my numbers.

The second problem:

For the second problem, procedures were correct, but I did not put the last problem in excel. I did not have enough time. But, despite that, I think I still could get a partial grade for trying. The grade given is 10 points and I did half of the work. I just did not have enough time to put the second equation in the excel.

I do not believe I will use this knowledge anywhere else except on my own water source in the house if it breaks and that probably would only happen to me once in my life. In the place I work I typically only deals with cable drawing, premade drawings, and fab drawings. I never encounter using pipes or pump. I do not believe I will be able to use everything I learned in class anywhere except probably using excel I notice I use excel at work a lot for the BOMs. I probably going to use using F4 in excel but other than that, I never thought of using anything I learned in the class anywhere. I am trying to b a principal engineer or a design engineer. The places I work for never need anything involving fluid. But I do notice we use a lot of Microsoft and excel a lot. It's weird because at work we barely use any of this equation and all the variables were given in specs already. It even says the min and max or the capacity of each product. I think everything is given to us already. I really just want to graduate and finish school. I think I have a couple more semester to graduate.

PROBLEM 1 or 2)

 Reasonable assumptions (reductions, valve, tubing diam, lengths) 1/10

.95/10
1/10
.5/10
9.35/10

FINAL GRADE:

(90)*(9.35/10) = 84.15

Please grade me using problem 1 and I tried problem 2 for extra points.

Part 1

Purpose:

- 1.) To find all the flow rate in the system.
 - a. Find Q1
 - b. Find Q2
 - c. Find Q3
- 2.) To find if the two sprinklers have the same flow.
- 3.) How to make them the same
- 4.) How does the fluid velocity compare to the critical velocity?
 - a. Is it far too off?
 - b. What would I do to fix it?

Sprinkler head K = 50 DRAWING & DIAGRAMS 2) L" Nominal Dipe of 0,3m P4 = Ø P = 400 kPaWide-Open ball value T-10int 1 = " Nominal . I" Nominal Pipe of 8.3 m pipe of 6.5m ·Sprinkler pipeline = Schedule-40 steel pipe SOURCES · Mott, R. Untener, J.A., "Applied Fluid Mechanics," 7th edition Pearson Education, In (2015) DESIGN CONSIDERATION · CONSTANT TEMPERATURE ·INCOMPESSIBLE · CONSTANT PROPERTIES OF WATER CONSTANT PRESSURE OF 400kPg (from Main source) DATA & VARIABLES : PART 1 OF 2 REDUCER · All pipes are Schedule - 40 steel pipe · 1 1/ Nominal pipe of 6.5[m] (Pipe #1) · 1" Nominal of 0.3[m] (Pipe # 2) • 1" Nominal of 8.3 [m] (pipe #3) · Constant pressure from the main source = P. = 400 KPg wide open ball value TJOINT FIDOW

D	DATA & VARIABLES: PART 20F2											
-	Table F.1 Schedule 40											
	Pipe C	:70	Diameter		Wall Thickne	Thickness		Inside Diameter Flou				
	NPS (in)	(mm)	(in)	(MM)	(1)()	(MM)	(in)	(in) (fl) (mm)		(ft2)	(m^2)	
#Z #3	1	25	1.315	33.4	0.133	3.38	1.049	0.0874	26.6	.0600	TO THE TO S	2
#1	1-2	40	1.900	48.3	0.145	3.68	1.610	0.1342	409	0.014/12/	· 3/4/×10	3
* [· Ins · Flo · Le · Ins · Flo · Le · Pipe · Ins · Le · Ins · Le · Ins · Le · Le · Ins · Le · · Ins · Le · · · · · · · · · · · · · · · · · · ·	ide I worth tale tale	ea 1") Diame -ea (1": Diama th th en ba	r = 40 = 1.2 = 6 ter = = 2 ter = =	$\frac{314 \times 10}{550}$ $\frac{314 \times 10}{550}$ $\frac{314 \times 10}{550}$ $\frac{3}{500}$ $\frac{3}{500}$ $\frac{3}{500}$ $\frac{3}{500}$	6[m 747 [m]	m^{2} $m^{2} = -4 [v]$ $m^{2} = -4 [v]$ $m^{2} = -4 [v]$	$\frac{1}{2}$ $0 \cdot C$ $m^{2} \frac{1}{2}$ $= 0.$ $4 \frac{1}{2}$	026 M ² _	,6[n]	1]	

A TEE

$$k = 0$$
, $k = 0$, $k =$

$$\begin{aligned} P_{i} = 400 \text{ kEr } \sqrt{} \\ Y_{w} = q_{*} g_{1} \left[\sum_{m}^{kN} \right] \sqrt{} \\ A_{i} = 1, 314 \text{ x10}^{3} \int_{m}^{m} 2 \int \sqrt{} \\ B_{*} = 9.81 \text{ x10}^{3} \int_{m}^{m} 2 \int \sqrt{} \\ A_{*} = 5.574 \text{ x10}^{4} \int_{m}^{m} 2 \int \sqrt{} \\ P_{i} = 0.04 \log \text{ Im} \sqrt{} \\ D_{3} = 0.02 \log \text{ Im} \sqrt{} \\ D_{3} = 0.02 \log \text{ Im} \sqrt{} \\ 2s = 0.3 \int_{m}^{m} \int \sqrt{} \\ C = 1.52 \text{ x10}^{-4} \int_{\pi}^{\pi} f \sqrt{} \\ V = 1.52 \text{ x10}^{-6} \int_{\pi}^{m} \sqrt{} \sqrt{} 4.6 \text{ x10}^{-5} \text{ m} \sqrt{} \\ V_{i} = \frac{Q_{i}}{A_{i}} \\ V_{3} = \frac{Q_{3}}{A_{3}} \\ \text{k ball value = 150 ft} \\ \text{K}_{TEE}_{FLOW THEOMATENT 20ft} \\ \text{K}_{TEE}_{FLOW THEOMATENT 20ft} \\ \text{Kellow = 20.5t} \\ \text{Kellow = 20.5t} \\ \int_{T} = \frac{0.25}{\left[\log\left(\frac{1}{3.4} \left(\frac{D}{2}\right)\right)\right]^{2}} \\ \int_{T} = \frac{0.25}{\left[\log\left(\frac{1}{3.4} \left(\frac{D}{2}\right)\right)\right]^{2}} \end{aligned}$$

PROCEDURE.

1) Put reference point 2) Put point 1 where P= 400 KRa show in the diagram 3 put point 2 q point 3 to sprinkler #1 q #2 $P_2 = P_3 = \emptyset (ATM)$ (1) Assum Q $\rightarrow R_{E_i} \left(\frac{D_i}{s}\right) \rightarrow f_i$ (5) Solve for Q3 using II Q3 = A3 ($\sqrt{29}\left(\frac{\frac{P_i}{8} + \frac{(P_i)^2}{29} - 23 - (f_i \frac{L_i}{51} + k_{ballvalve} + k_{tree} + k_{cons})(\frac{(A_i)^2}{29}\right)$ (1+ (f_3 $\frac{L_3}{D_3} + K_{elbow} + K_{sprinkler})$ (5.) Assume fo (5.2) solve for Q3 (5.3) compute Re3 (=) (5.4) Compute for f3 new (5.5) Compare new & old f3 @ Solve for Q 2 using I (Repeat step 5) (MEED TO ITERATE) (F) compute for Quising I (8) compare new & old Q,

$$\begin{aligned} &(\mathcal{U}_{\mathcal{C}}(\mathcal{U}_{\mathcal{A}},\mathcal{T},\mathcal{I},\mathcal{I}) \land \mathsf{Series} \ P_{\mathcal{P}} \mathcal{E} \ \mathsf{live} \ \mathsf{System} \ \left[\begin{array}{c} \mathcal{E}_{\mathcal{C}}(\mathcal{A},\mathcal{T},\mathcal{I},\mathcal{I}) & \mathcal{E}_{\mathcal{C}}(\mathcal{A},\mathcal{I},\mathcal{I}) & \mathcal{E}_{\mathcal{C}}(\mathcal{A},\mathcal{I}) & \mathcal{E}_{\mathcal{C}}(\mathcal{A},\mathcal{I}) & \mathcal{E}_{\mathcal{C}}(\mathcal{A},\mathcal{I},\mathcal{I}) & \mathcal{E}_{\mathcal{C}}(\mathcal{A},\mathcal{I}) &$$

 $\chi_{1} + \frac{P_{1}}{Y} + \frac{V_{1}}{29} + \frac{1}{7} = \frac{P_{2}}{Y} + \frac{V_{3}}{29} + \frac{1}{22} + h_{2} + \frac{1}{7}$ $\frac{P_{1}}{8} + \frac{V_{1}^{2}}{29} = \frac{V_{3}^{2}}{29} + 22 + h_{L}$ $\frac{P_i}{2} + \frac{\left(\frac{Q_i}{A_1}\right)^2}{2g} = \frac{\left(\frac{Q_2}{A_2}\right)}{2g} + \frac{2}{2} + h_L$ $\frac{\left(\frac{Q_z}{A_z}\right)^2}{2g} = \frac{P_1}{\gamma} + \frac{\left(\frac{Q_1}{A_1}\right)^2}{2g} = \frac{P_2}{\gamma} + \frac{P_1}{2g} + \frac{P_2}{2g} + \frac{P_2}{2g} + \frac{P_1}{2g} + \frac{P_2}{2g} + \frac{P_1}{2g} + \frac{P_2}{2g} + \frac{P_1}{2g} + \frac{P_2}{2g} + \frac{P_1}{2g} + \frac{P_2}{2g} + \frac{P$ $\left(\frac{Q_2}{A_2} \right)^2 \left(\frac{P_1}{2} + \frac{\left(\frac{Q_1}{A_1} \right)}{2g} - 2z - h_L \right) 2g$ $Q_2 = \left(\frac{1}{29} \left(\frac{P_i}{\gamma} + \frac{\left(\frac{Q_i}{A_i}\right)}{29} - z_2 + h_2 \right) \right) * A_2$ $h_{L} = \left(\frac{0.25}{\left[\log\left(\frac{1}{3.7(D_{1})} + \frac{5.74}{(VD_{1})^{o_{1}}}\right]^{2}}\right) \times \frac{L_{1}}{D_{1}} \times \frac{\left(\frac{Q_{1}}{A_{1}}\right)^{2}}{29} + K_{ball value}\left(\frac{\left(\frac{Q_{1}}{A_{1}}\right)^{2}}{29}\right) + \frac{1}{2}$ $K_{TEE}\left(\frac{(A_{1})^{2}}{2g}\right) + K_{SUDDEI^{1}}\left(\frac{(A_{1})^{2}}{2g}\right) + \left(\frac{0.25}{\log\left(\frac{1}{3.7}\left(\frac{Q_{1}}{2}\right)^{2}+\frac{5.744}{(VD_{1}SO^{2})^{2}}\right) \times \frac{L_{2}}{2g}}{D_{1}} \times \frac{A_{2}}{2g}$ + K sprinkling $\left(\frac{(Q_z)^2}{A_2}\right)$

EQUATION # 3

$$\begin{pmatrix} \frac{Q_{2}}{A_{2}} \\ \frac{Q_{2}}{A_{2}} \\ \frac{Q_{2}}{P_{2}} \\ \frac{Q_{2}}{P_$$

Please see the excel spreadsheet!

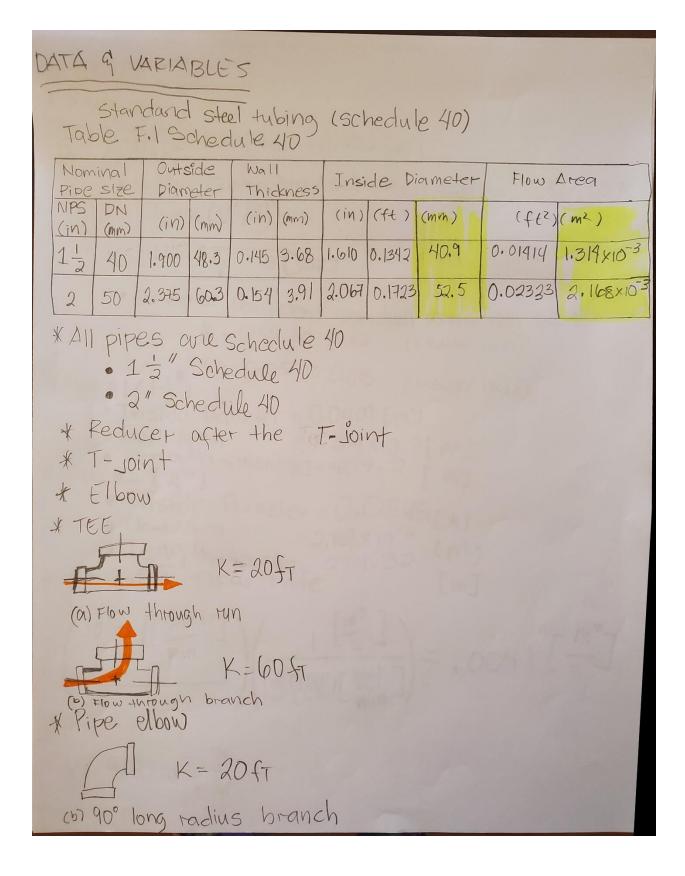
P1=	4.00E+05	Ра						
V critical=	3	m/s						
z3=	0.3	m						
gamma=	9.81E-03	N/m3	L1:	= 6.5	m		V1=	3.43E+03
nu=	1.52E-06	m2/s	L2:	= 0.3	m		V2=	6.02E+03
e=	4.60E-05	m	L3:	= 8.3	m		V3=	2.06E+03
g=	9.81E+03	N/m2						
				1.31E-				
D1=	0.0409	m	A1			m2		
				5.57E-				
D2=	0.0266	m	A2			m2		
				5.57E-				
D3=	0.0266	m	A3	= 04		m2		
Kteev2=	60)						
Kelbow=	20)						
Kballvalve=	150)						
Ksud con=	0.25	5						
Ksprinkler=	50)						
kteev2=	20)						

V1=	V2=	V3=	Velocity critical	%diffv1	%diffv2	%diffv3
3.43E+03	6.02E+03	2.06E+03	3	-99.91%	- 100.02%	- 100.05%

	Assume						Assume				
	Q1		1								Q3
Iteration	(m3/s)	Re1	(D/e)1	f1	fT1	NUM	f3	(D/e)3	fT3	DEN3	(m3/s)
	,								2.25E-		
1	0.01	2.05E+05	8.89E+02	0.0216	0.0202	4.08E+07	0.010000	5.78E+02	02	5.70E+00	1.49E+00
	,								2.25E-		
	0.01	2.05E+05	8.89E+02	0.0216	0.0202	4.08E+07	2.25E-02	5.78E+02	02	9.61E+00	1.15E+00
ļ	1								2.25E-		
	0.01	2.05E+05	8.89E+02	0.0216	0.0202	4.08E+07	2.26E-02	5.78E+02	02	9.61E+00	1.15E+00
	,								2.25E-		
	0.01	2.05E+05	8.89E+02	0.0216	0.0202	4.08E+07	2.26E-02	5.78E+02	02	9.61E+00	1.15E+00

			Assume				
							Q2
Re3	f3new	%diff3	f2	(D/e)2	fT2	DEN2	(m3/s)
					2.25E-		
4.70E+07	0.0225	125.50%	0.010000	5.78E+02	02	1.12E+00	3.36E+00
					2.25E-		
36148887	0.0226	0.01%	0.022545	5.78E+02	02	1.12E+00	3.36E+00
					2.25E-		
36147489	0.0226	0.00%	0.022545	5.78E+02	02	1.12E+00	3.36E+00
					2.25E-		
36147488	0.0226	0.00%	0.022545	5.78E+02	02	1.12E+00	3.36E+00

			Q1
Re2	f2new	%diff2	(m3/s)
1.06E+08	0.0225	125.45%	4.85E+00
1.06E+08	0.0225	0.00%	4.505054
1.06E+08	0.0225	0.00%	4.505009
1.06E+08	0.0225	0.00%	4.505009


Summary

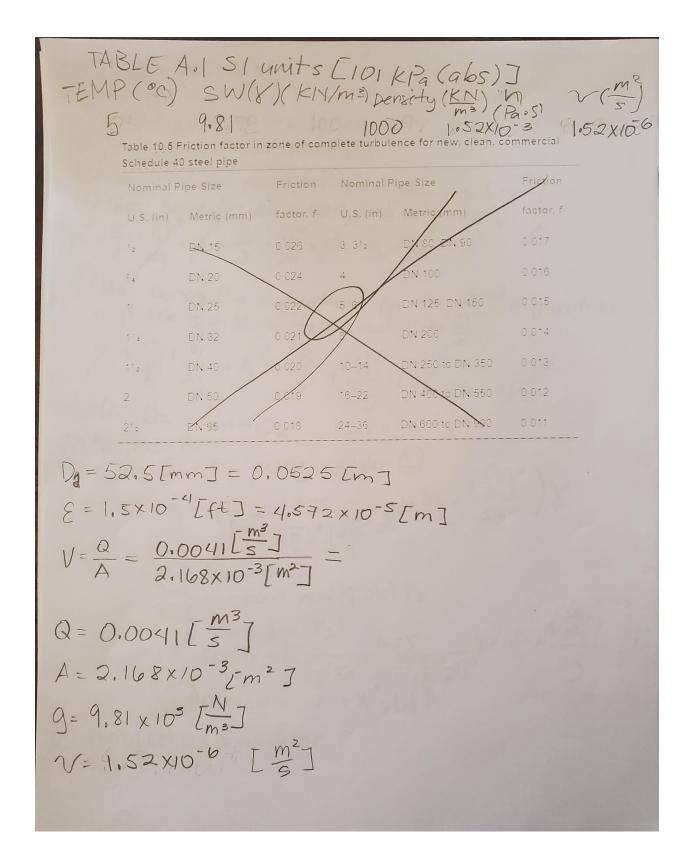
The part 1 of test 3 is solving for the missing
flow rales for all of the pipes.
$$Q_1 = Q_2 + Q_2$$
. By using
barnoullis equation and substituting $\frac{Q}{A}$ from V
I can solve for $Q_3, Q_2, 9Q_1$. I did not breat
down $\frac{Q}{A}$ to $\frac{8Q^2}{9\pi^2D^4}$ because I have the area
of flow by using the table on the back of the
book. Solve the flow pate using the procedure.
Material:
"Reducer
"All pipes size : schedule 40skel"
"All pipes size : schedule 40skel
"Toonf
Mulysis: (parts of parts)
The first flow 1s' equal to the two other flow
 $(Q_1 = Q_2 + Q_3)$. The pipeline system is a series and not
a parallel. The two sprinklers are not exactly the same because
of the difference in the minor losses.
 $Q_2 = (\sqrt{aQ(-\frac{P_1 + (\frac{Q_1}{2})^2 - z_2 - (5 \frac{L_1}{2} + Keptinkler)})) + A_2$
 $(1+(f_2, \frac{L_2}{D_2} + Keptinkler))$ + As
 $(1+(f_3, \frac{L_3}{D_3} + Kelbow + Keptinkler)$

Analysis: (part 2 of partz) as shown above, az & az are a little bit similar. The top is similar but the bottom is different. Q1=4,28184 [-5] Q2 = 3.13 [57 Q3= 10/5 [-m3] $Q_1 = Q_2 + Q_3$ $4.28 \ C = \frac{m^3}{5} \ 7 = 3.13 \ C = \frac{m^3}{5} \ 7 + 1.15 \ C = 3$ To make the two sprinkles the same, we need to have or to use a value eventually. My velocities are too far off from the critical velocity. If I need to have a velocity close to the critical velocity, we need to change the pipe size, Buil, doing so is not practical. The labor, material, and everything else in between will be expensive. Have a velocity difference of 100% is bad, so the recommunded action is to replaced the exsisting pipes.

Part 2

DRAWING & DIAGRAMS	
FBD#1 \$0 	- 1500[ft]
• A horizontally laid 2" : long and has water flow Rate. FBD#2	standard steel tubing is 1500 ft passing through it at a 65 GPM
	1500 [ft] - 900[ft] + +
standarid steel tubing	by adding a loop made of 15" that is only 900 [ft] long.
Mott, R, Untener, J Th edition Reatson DESIGN CONSIDERATION	A., "Applied Fluid Mechanics," Continential Theorem (2015)
• CONSTANT TEMPE • INCOMPESSIBLE • CONSTANT PROPER	RA TURE

$$g=9.81 \times 10^{9} [\frac{N}{m^{3}}]$$


$$\frac{y}{z} = \frac{5245 [mn]}{12} = 1.20 [mm] = 0.0012 [mn]$$

$$= \frac{5245 [mn]}{12} = 1.20 [mm] = 0.0012 [mn]$$

$$= \frac{5245 [mn]}{12} = 1.20 [mm] = 0.0012 [mn]$$

$$= \frac{5245 [mn]}{12} = \frac{1.20 [mm]}{12} = 0.0012 [mn]$$

$$= \frac{5245 [mn]}{12} = \frac{$$

PROCEDURE: poult 2 of 2 1) Put a Reference to the 1st diagram 2) put point 1) & point 2) (3) Convert Gallon per minut flow rate to E^{m3}]
(4) Use Bernoullis equation and simplify V= Q
(4) H² + V³/₂ + J²/₂ = ^{B2}/₂ + V³/₂ + J²/₂ + h_L + V_R The Bernoullis equation for the 2nd equation and the simplify to include $V = \frac{Q}{A}$ $\frac{V_1 + P_1 + V_1}{8} + Z_1 = \frac{P_2}{8} + \frac{V_2^2}{2g} + \frac{2}{2g} + \frac{2}{2$ $Q_1 = Q_2 = Q_a + Q_b$ $h_{L1-2} = h_a = h_b$ (Assume PI (2) Solve for P2 using problem () $P_{2} = P_{1} - \left(\left(\frac{0.25}{\left[\log \left(\frac{1}{3.7 \left(\frac{D_{1}}{2} \right)^{2}} + \frac{5.74}{\left(\frac{V}{2} \right)^{0}} \right)^{2}} \right) \times \frac{L_{1}}{D_{1}} \times \frac{\left(\frac{Q_{1}}{\Delta_{1}} \right)^{2}}{29} \right) \right)$ (7.) Assume P2 (7.2) compate new gold P2 $\begin{array}{c} (\overline{\textbf{-3}}) \text{ solve for } P_1 \\ P_1 = P_2 + \left(\left(\frac{0.25}{\left[\log\left(\frac{1}{3.7} + \frac{5.74}{E} \right)^2 \right]^2} \times \frac{L_1}{D_1} \times \frac{\left(\frac{1}{\Delta_1} \right)}{2g} \right) \right) \\ \end{array}$ (7.4) compare new gold P (B) PROBLEM #2 : Assume P

PROCEDURE: part 2 of 2 9) Solve for Pz using problem IV $\boxed{\Pi} \quad Q_1 = Q_4 + Q_6$ $\frac{\overline{|V|}}{P_{Z}} = P_{1} + \gamma \left(\left(\frac{\left(\frac{Q_{1}}{A_{1}} \right)^{2} \left(\frac{Q_{2}}{A_{2}} \right)^{2}}{2^{Q}} \right)^{2} + \overline{z}_{1} - \left(\left(\frac{O_{0} \, 2 \, 5}{\left(\frac{1}{\left[\log \left(\frac{1}{3^{2} \left(\frac{Q}{2} \right)^{2}} \right) \left(\frac{V_{1}}{V_{2}} \right) \right]^{2}} \right) \times \frac{L_{1}}{D_{1}} + \frac{K_{HE}}{E_{ort}} + \frac{K_{sup}}{Corr} \right) \left(\frac{\left(\frac{Q_{1}}{A_{1}} \right)^{2}}{2^{Q}} \right)^{2} + \frac{1}{2} \left(\frac{1}{\left[\log \left(\frac{1}{3^{2} \left(\frac{Q_{2}}{2} \right)^{2}} \right) \left(\frac{V_{1}}{V_{2}} \right) \right]^{2}}{2^{Q}} \right)^{2} + \frac{1}{2} \left(\frac{1}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{2}}{2} \right)^{2}} \right) \left(\frac{Q_{1}}{V_{2}} \right) \left(\frac{Q_{1}}{A_{1}} \right)^{2}}{2^{Q}} \right)^{2} + \frac{1}{2} \left(\frac{1}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{2}}{2} \right)^{2}} \right) \left(\frac{Q_{1}}{A_{2}} \right)^{2}}{2^{Q}} \right)^{2} + \frac{1}{2} \left(\frac{1}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{1}}{2} \right)^{2}} \right) \left(\frac{Q_{1}}{A_{1}} \right)^{2}}{2^{Q}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{2}}{2} \right)^{2}} \right)^{2}}{2^{Q}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{A_{1}} \right)^{2}}{2^{Q}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2}}{2^{Q}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2}}{2^{Q}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{3^{2} \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{2} \right)^{2}} \right)^{2} + \frac{1}{2} \left(\frac{Q_{1}}{\left[\log \left(\frac{Q_{1}}{2} \right)^{2}} \right)$ $\left(\frac{0.25}{\left[\log\left(\frac{1}{3.7\left(\frac{D_2}{E}\right)}+\frac{5.74}{V.D_2}\right)\right]^2}\right) \times \frac{L^2}{D_2} + kelbow\left(\frac{\left(\frac{Q_2}{A_2}\right)^2}{2g}\right)\right)$ 9.) Assume Pz (9.3 compare new & old Pz (9.3) solve for Pa $P_{1} = P_{z} - \gamma \left(\left(\frac{\left(\frac{Q_{i}}{A_{i}} \right)^{2} \left(\frac{Q_{i}}{A_{2}} \right)}{2g} \right) + z_{i} - \left(\left(\frac{0.25}{\left(\frac{1}{3g/R} \right)^{2} \left(\frac{M_{i}}{2g} \right)^{2} \right) \times \frac{L_{i}}{D_{i}} + K_{ik} + K_{sub} \right) \left(\frac{\left(\frac{Q_{i}}{A_{1}} \right)^{2}}{2g} \right) + \frac{1}{2g} + \frac{1}{2$ $\frac{0.25}{\left[log\left(\frac{1}{3.7\left(\frac{D_{L}}{Z}\right)} + \frac{V.D_{L}}{25}\right)^{n}}\right]^{2}} \times \frac{L_{2}}{D_{2}} + \frac{Kelbow}{\left(\frac{Q_{2}}{42}\right)} + \frac{V.D_{L}}{25} + \frac$ (9.4) Compair new fold Pa

CALCULATION #1) 1500 [A] REFERENCE $\frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}$ $\frac{P_1}{\gamma} = \frac{P_2}{\gamma} + h_1$ $\left(\frac{P_1}{X} - h_1\right) = \left(\frac{P_2}{X}\right) X$ $P_{1} - h_{1} = P_{2}$ $P_{2} = P_{1} - h_{L} = P_{1} - (f_{X} - L_{X} - \sqrt{2}) Y$ $P_2 = P_1 - \left(f \times \frac{L}{P} \times \frac{(Q)^2}{(A)^2}\right)$ $T P_{2} = P_{1} - \left(\frac{0.25}{\left[\log \left(\frac{1}{3.7 \left(\frac{D}{5} \right)^{+}} \frac{5.74}{\left(\frac{V}{D} \right)^{\alpha}} \right)^{2}} \right) \times \frac{L}{D_{1}} \times \frac{\left(\frac{Q_{1}}{A_{1}} \right)^{2}}{29} \right) \times \frac{L}{D_{1}} \times \frac{\left(\frac{Q_{1}}{A_{1}} \right)^{2}}{29} \right) \times \frac{L}{D_{1}} \times \frac{\left(\frac{Q_{1}}{A_{1}} \right)^{2}}{29} \times \frac{L}{D_{1}} \times \frac{\left(\frac{Q_{1}}{A_{1}} \right)^{2}}{29} \right) \times \frac{L}{D_{1}} \times \frac{\left(\frac{Q_{1}}{A_{1}} \right)^{2}}{29} \times \frac{L}{D_{1}} \times \frac{L}{29} \times \frac{L}{2$ $P_{1} = P_{2} + \left(\underbrace{\begin{array}{c} 0.25 \\ \hline 1.5 \end{array} + \underbrace{\begin{array}{c} 6.74 \\ 74 \end{array}}_{1} \right)^{2} X \underbrace{\begin{array}{c} L_{1} \\ D_{1} \end{array}}_{29} \times \underbrace{\begin{array}{c} 29 \\ 29 \end{array}}_{29}$

CALCULATION: Parallel system with two branches - 1500[ft] A = 900 (ft) A = QzREFERENCE $\frac{\sqrt{1+\frac{P_{1}}{8}+\frac{V_{1}^{2}}{2g}+\frac{P_{2}}{8}=\frac{P_{2}}{8}\frac{V_{2}^{2}}{2g}+\frac{V_{2}}{8}+\frac$ - Qo $h_{Lin} = ha = h_{h}$ $\frac{P_{1}}{Y} + \frac{V_{1}^{2}}{2g} + \frac{P_{2}}{Z_{1}} = \frac{P_{2}}{Y} + \frac{V_{1}^{2}}{2g} + h_{1}$ $\frac{P_{1}}{\gamma} + \frac{V_{1}^{2}}{2g} + \frac{V_{2}}{2g} - h_{2} = \frac{P_{2}}{\gamma}$ $P_{2} = \left(\frac{P_{1}}{\gamma} + \frac{V_{1}^{2} - V_{2}}{29} + z_{1} - h_{1}\right) Y$

$$\begin{split} P_{2} &= \left(\frac{P_{1}}{Y} + \frac{V_{1}^{2} - V_{2}^{2}}{Q_{2}^{2}} + z_{1} - h_{L}\right) Y \\ &= P_{1}^{2} + \left(\left(\frac{Q_{1}}{A_{1}}\right)^{2} - \frac{Q_{2}}{A_{2}}\right)^{2} + z_{1} - h_{L}\right) Y \\ P_{2} &= P_{1}^{2} + \left(\left(\frac{Q_{1}}{A_{1}}\right)^{2} - \frac{Q_{2}}{A_{2}}\right)^{2} + Z_{1} - h_{L}\right) Y \\ h_{L} &= \left(\frac{Q_{2} + z_{1}^{2}}{\frac{Q_{2}}{S_{17}(\frac{L}{E_{1}})}}\right)^{2} + \frac{L_{L}}{Q_{2}} \times \frac{Q_{1}}{2}\right)^{2} + K_{\text{rec}} \left(\frac{Q_{1}}{A_{2}}\right)^{2} + K_{\text{suppert}} \left(\frac{Q_{1}}{A_{2}}\right)^{2} + K_{\text{suppert}} \left(\frac{Q_{1}}{A_{2}}\right)^{2} + \frac{L_{L}}{Z_{2}} \times \frac{Q_{2}}{2}\right)^{2} + K_{\text{rec}} \left(\frac{Q_{1}}{A_{2}}\right)^{2} + K_{\text{suppert}} \left(\frac{Q_{1}}{A_{2}}\right)^{2} + K_{\text{suppert}} \left(\frac{Q_{1}}{A_{2}}\right)^{2} + \frac{L_{L}}{Z_{2}} \times \frac{Q_{2}^{2}}{2}\right)^{2} + K_{\text{rec}} \left(\frac{Q_{1}}{A_{2}}\right)^{2} + \frac{L_{L}}{Z_{2}} \times \frac{Q_{2}^{2}}{2}\right)^{2} + K_{\text{rec}} \left(\frac{Q_{1}}{A_{2}}\right)^{2} + \frac{L_{L}}{Z_{2}} \times \frac{Q_{2}^{2}}{2} + \frac{L_{L}}{Z_{2}} \times \frac{Q_{2}^{2}}{2}\right)^{2} + \frac{L_{L}}{Z_{2}} \times \frac{Q_{2}^{2}}{2} + \frac{L_{L}}}{Z_{2}} \times \frac{Q_{2}^{2}}{2} + \frac{L_{$$

	problem 1											
						Assume	Assume					
									%diff		%diff	
Iteration	Q1(m3/s)	Re1	(D/e)1	f1	fT1	P1	P2	P2 (new)	P2	P1 (new)	P1	
1	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	0.010000	0.010000	9.42E-03	6.21%	6.96E-02	- 85.63%	
									-			
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	0.069598	0.009415	6.90E-02	86.36%	6.90E-02	0.85%	
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	1.000000	1.000000	9.99E-01	0.06%	1.06E+00	-5.62%	
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	1.059598	0.999415	1.06E+00	-5.63%	1.06E+00	0.06%	
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	1.059013	1.059013	1.06E+00	0.06%	1.12E+00	-5.33%	
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	1.118612	1.058429	1.12E+00	-5.33%	1.12E+00	0.05%	
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	1.118027	1.118027	1.12E+00	0.05%	1.18E+00	-5.06%	
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	1.177625	1.117442	1.18E+00	-5.06%	1.18E+00	0.05%	
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	1.177040	1.177040	1.18E+00	0.05%	1.24E+00	-4.82%	
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	1.236639	1.176456	1.24E+00	-4.82%	1.24E+00	0.05%	
	0.004101	6.54E+04	1.14E+03	0.0230	0.0190	1.236054	1.236054	1.24E+00	0.05%	1.30E+00	-4.60%	