TEST 3 HOMEWORK ASSIGNMENTS

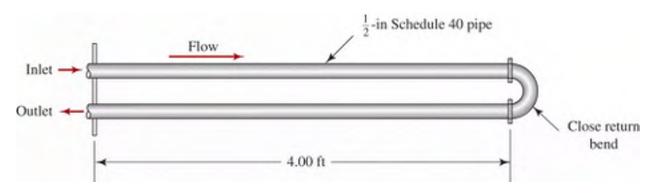
- 3.1
- 3.2
- 3.3
- 3.4

MET 330 HW. 3.1 PROBLEMS 20, 37, 39, 43, 46, & 48

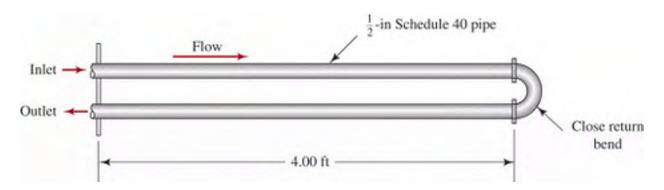
WORK DONE IN A GROUP BY:
Spencer Reed
Joel Thomas
Nick Dunham
Olaoluwa Oduntan

```
Oladusa A. Oduntan IN 3.1
10.20 Given
      DN 125 School 80 steel pipe ID = 122.3mm, A = 1173 × 102 m2
      DN 50 Schedule 80 Steel pipe: 10 = 472mm, A= 1.905×103m2
      Q = 500 L/min
      Required
      Energy loss for a Budden Contraction
      Story
                                                D1 = 122.3 mm, A1 = 1.173 × 10-2 m2 1 Table 5.2
D2 = 49.3 mm, A2 = 1.905 × 10-3 m2 1 Appendix F
          Q= 5001/min x 1 m/s
                                        = 0.0085 n 3/2
                \frac{D_1}{D_2} = \frac{122.3 \text{mm}}{22.3 \text{mm}} = 2.48 \approx 2.5
                          where K = 0.386 (By interpolation)
                                      4.357-40 = 14-0-39 => 14=0-326-43
                                      5.0.40 0.38.0.39
```

: h_= 0.37m


2/98/11/2

1-1


Homework 3.1

10.37

Problem: A simple heat exchanger is made by installing a close return bend on two ½-in Schedule 40 steel pipes as shown. Compute the pressure difference between the inlet and the outlet for a flow rate of 12.5 gal/min of ethylene glycol at 77°F.

Solution: Since fluid is moving, we will use Bernoulli's equation and assign points where information is known.

Our equation: $h_A + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + z_2 + h_R + h_L$. There is no pump or turbine, and given the flow rate and constant pipe size, the inlet/outlet velocity is the same. Also, the vertical height between points 1 and 2 is negligible. Therefore: $P_1 - P_2 = h_L * \gamma$ where $h_L = h_{pipe} + h_{bend}$, $h_{pipe} = f * \frac{L}{D} * \frac{v^2}{2g}$, and $h_{bend} = K \frac{v^2}{2g}$.

From figure 10.23 (f, close return bend), $K = 50f_t$

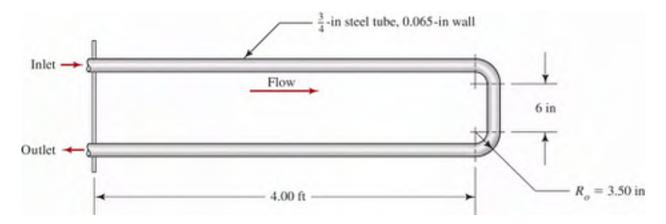
Table B.2:
$$\rho_{EG@77^{\circ}F} = 2.13 \frac{slugs}{ft^3}$$
, $\eta_{EG} = 3.38 * 10^{-4} lb - \frac{s}{ft^2}$, $\gamma = 68.47 \frac{lb}{ft^3}$

Table F.1: $\frac{1}{2}$ SCH40 steel pipe: $A = 0.00211 \, ft^2$, D = 0.0518 ft

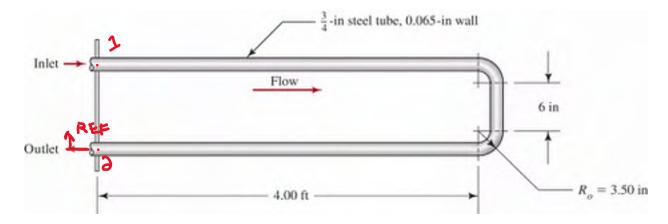
Now
$$v = \frac{Q}{A} \to \frac{12.5 \frac{gal}{min.} + \frac{ft^3}{s}}{0.00211ft^2} = 13.19 \frac{ft}{s}.$$

Reynolds number: $Re = \frac{2.13 \frac{s lugs}{ft^3} * 13.19 \frac{ft}{s} * 0.0518 ft}{3.38 * 10^{-4} lb - \frac{s}{ft^2}} = 4,307$, this is >4,000 which is turbulent.

From table 10.5:
$$f_t = 0.026 \rightarrow K = 50 * 0.026 = 1.3 \rightarrow h_{bend} = 1.3 * \frac{\left(13.19\frac{ft}{s}\right)^2}{2*32.2\frac{ft}{s^2}} = 3.51ft$$


Calculating in Excel:
$$f = 0.043 \rightarrow h_{pipe} = 0.043 * \frac{2*4ft}{0.0518ft} * \frac{\left(13.19\frac{ft}{s}\right)^2}{2*32.2\frac{ft}{s^2}} = 17.94ft$$

Finally:
$$\Delta P = (17.94ft + 3.51ft) * 68.47 \frac{lb}{ft^3} * \left(\frac{1ft}{12in}\right)^2 = \mathbf{10.2}psi$$


10.38

Problem:

A proposed alternate form for the heat exchanger described in Problem 10.37 is shown. The entire flow conduit is a ¾-in steel tube with a wall thickness of 0.065 in. Note that the ID for this tube is 0.620 in, slightly smaller than that of the ½-in Schedule 40 pipe (D=0.622in). The return bend is formed by two 90° bends with a short length of straight tube between them. Compute the pressure difference between the inlet and the outlet of this design and compare it with the system from Problem 10.37.

Solution: Since fluid is moving, Bernoulli's equation will be use, and reference points given:

Our equation is now: $P_1 - P_2 = \frac{(h_L * \gamma)}{Z_1}$. From problem 10.37:

$$h_L = h_{pipe} + h_{bend}$$
, $h_{pipe} = f * \frac{L}{D} * \frac{v^2}{2g}$, and $h_{bend} = K \frac{v^2}{2g}$

$$\rho_{EG@77^{\circ}F} = 2.13 \frac{slugs}{ft^{3}}, \quad \eta_{EG} = 3.38 * 10^{-4} lb - \frac{s}{ft^{2}}, \quad \gamma = 68.47 \frac{lb}{ft^{3}}$$

From figure 10.23, $K = 20 f_T$

$$D = 0.620in * \frac{1ft}{12in} = 0.05167ft, \quad A = \pi * \frac{0.05167^2}{4} = 0.00209ft^2$$

Re-calculating V, Re:
$$v = \frac{Q}{A} \rightarrow \frac{12.5 \frac{gal}{min.} * \frac{ft^3}{s}}{0.00209 ft^2} = 13.279 \frac{ft}{s}$$

$$Re = \frac{2.13 \frac{slugs}{ft^3} * 13.19 \frac{ft}{s} * 0.05167 ft}{3.38 * 10^{-4} lb - \frac{s}{ft^2}} = 4,323$$

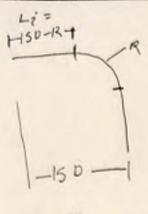
Table 10.5:

$$f_t = 0.026 \rightarrow K = 20 * 0.026 = 0.52 \rightarrow h_{bend} = 2 * \left(0.52 * \frac{\left(13.279 \frac{ft}{s}\right)^2}{2*32.2 \frac{ft}{s^2}}\right) = 2.847 ft$$

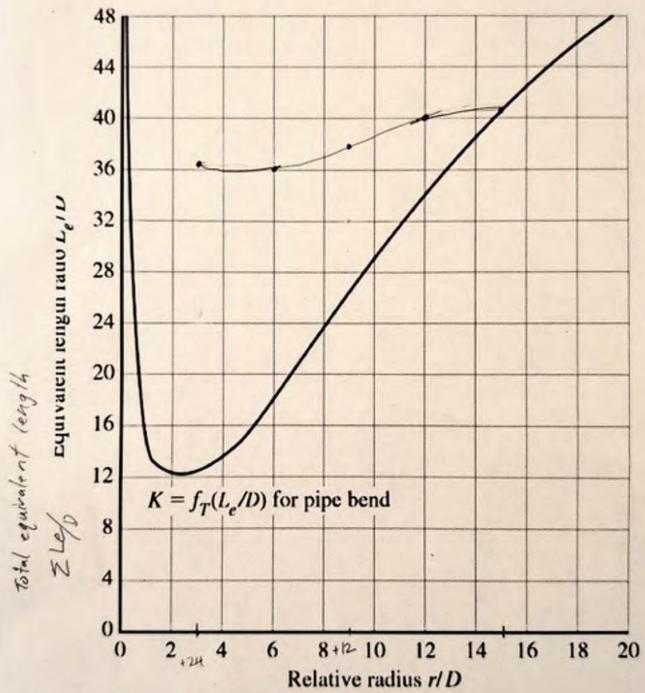
Calculating in Excel:
$$f = 0.0428 \rightarrow h_{pipe} = 0.0428 * \frac{(2*4ft) + \frac{6in}{12}}{0.05167ft} * \frac{\left(13.279 \frac{ft}{s}\right)^2}{2*32.2 \frac{ft}{c^2}} = 18.181ft$$

$$\Delta P = \left(17.94ft + 3.51ft + \frac{6in + (2*3.5in) - 0.75in}{12in}\right) * 68.47 \frac{lb}{ft^3} * \left(\frac{1ft}{12in}\right)^2 = \mathbf{9.513} \mathbf{psi}$$

Pressure difference:


$$\frac{10.190psi-9.513psi}{9.513psi}*100 = 7.1\%$$
 less pressure drop in this configuration

4 -Spencer Red 4 Given: Tw = 50°F Q = 0.40543/s 10.39) MET330 4 Xue 55 = 624 16/4+3 p= 1.945/ugs/4+3 HW 3.1 4 U= 272 × 10-5 y= 1.40 × 10-5 20,37 4 39,43, 3 in sch. 40 pipe: DI = 3.068 in or 0.2557ft 4 46,48 Flow Area = 0.05132412 4 9 4 4 3 in sch. 40 pipe 2 2 Find energy loss as 0.40 fts/s of 420 @ 50F 2 K=2057 Straight run through of a tee 2 2 h_= K 1/2 U= 2 V= 0.40+18/5 3 V= 7.79 ft/s h, = 20 ft 2x 8.5 f2/6 4 4 F- 0.017in from table 10.5 3 9 h = 20 x 0.017 x (7.79 +1/5) 9 9 hy=0.32ft 0 9 0 4


4

-

10.43 The inlet and the outlet shown in Fig. P10.43(a) are to be connected with a 50 mm OD × 2.0 mm wall copper tube to carry 750 L/min of propyl alcohol at 25°C. Evaluate	D= 46mm = 0.046mm = 1.5×10-6 m - Table 8.2
the two schemes shown in parts (b) and (c) of the figure with regard to the energy loss. Include the losses due to both the bend and the friction in the straight tube.	Y = 7.87 kN/m3 V = 2.39 x10-6 m2/s } Table 8./
150 - 600 mm - 7 - 150	$A = \frac{\pi}{4} D^2 = \frac{\pi}{4} (6.046m)^2 = 0.001662m^2$ $Q = \frac{750 L}{min} \cdot \frac{1m^3/5}{600004/min} = 0.0125 m^3/5$
Nome OD Star Section S	V = Q = 0.0125 m/s = 7.5215 m/s
STELB STELB	$R = \frac{VD}{V} = \frac{7.52 \text{m/s} \cdot 0.046 \text{m}}{2.34 \times 10^{-6} \text{m}^2/\text{s}} = 1.45 \times 10^{5}$
(h) Proposal I II II Proposal 2	f = 0.0168 (by swamee - Juin)
use $h_L = f \cdot \frac{\sum Le}{D} \cdot \frac{V^2}{2g}$ with Le from Fig. 10.28 besed on R/D	
Proposal 1 no straights	
R = 750 mm = 16.3	
Le ~ 43 (Fig. 10.20)	2
bL = f b y2g = 0.0168.43 . (7.52 m/s)	$\sqrt{s_2} = \frac{2.08 \text{m}}{1.00 \text{m}}$
Proposa / 2 - 2x 0.6m straight 8 = 150mm = 3.26	
R = 150mm = 3.26 46mm = 3.26 Lex = 12.5 (Fig. 10.28) = Le = 12.5.0.046	sm=0.575m Using summed lengths
LB 2.0.6m = 26.09 \ ZLe =	Le+LB=0.575m+2.0.6m=1.775m
ZLe = LeA + LB = 12.5+ 26.09 = 38	3.59 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
h_= f. = 1 - 29 = 0.0/68.38.59.7	$\frac{52}{1.81}m/5^2 = 1.87m$
Note: Total equivalent length gre	ater for proposal 1.

ZLe=Z. Li+Le = 2 (150-R)+Le (considering oprather than ID for simplicity)

10.46) Tw = 50°C Q=6.0 × 10 m3/s Do = 100mm Do = 50mm W+2 = 3,5 mm 44 = 2mm DI2 = 100mm - 2735mm = 93mm. DI, = 50mm - 2x2mm = 46mm Xu = 9.69 KN/m3 pw = 988 Kg/m3 ym = 132,8 EN/m3 pm = 13540kg/m3 6-Water + + 2 + 2, -h, = = + 2y + Zz + h P1-P2 + V1-Ve + Z1- Z2 = h Doomm 350 mm P,-P2_8/(0.35m)+8/(1.1n-10.25m) mercury = 132. Km/m3 (0.35m) + 0.85m 25cm P1-P2 = 5.65m h = P,-P2 + U, - 1/2 + 2, - 22 Q = AV V = A = 5.65 m + (2.61 m 18) - (0.88 m 15) = +120 m V = 6.0 × 10 - 3 m 1/5 x 2 × 9.81 m 1/3 = +120 m V = 6.0 × 10 - 3 m 1/5 x h, = 5.075m V= 3.61m/s V2 = 9 Eg for minor loss resistent coeff. VL = 6.x 10.1 m/s h, = K 29 V2 = 0.88 m/s 5.075 = K = 8.61 S.075= K x G. 686 K= 5.075 x = 7.398

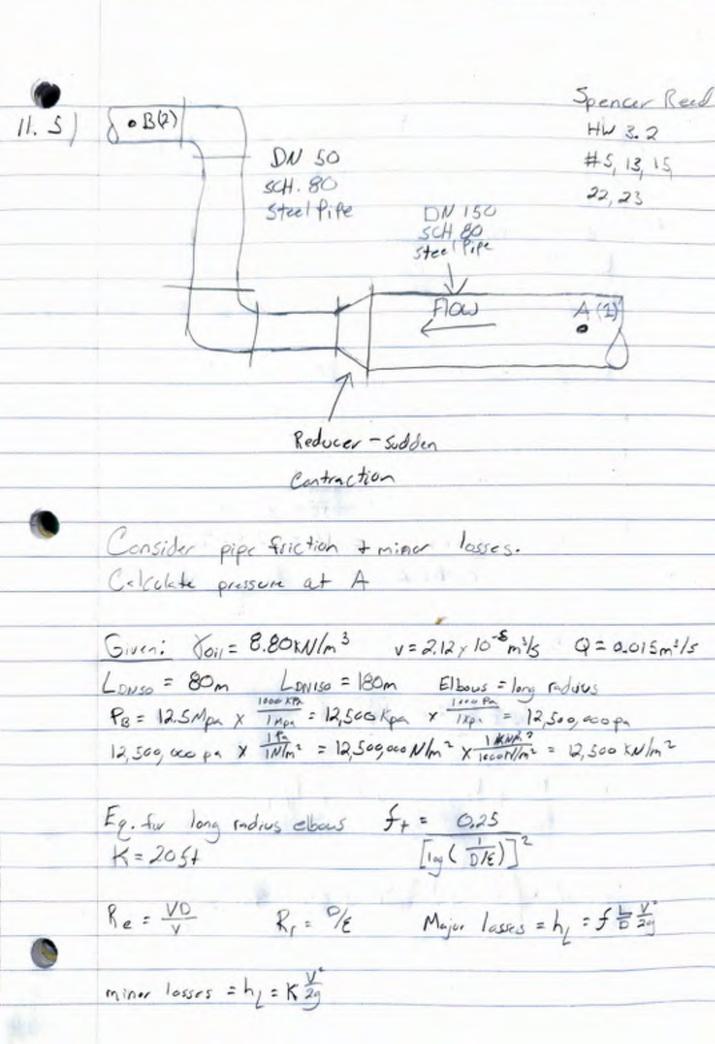
0.686

8 Compute the energy loss in a 90° b	pend in a steel tube used
for a fluid power system. The tube wall thickness of 0.083 in. The mea	
The flow rate of hydraulic oil is 27	7.5 eal/min.
The flow late of hydraulic of 15 2.	7.5 gal/min. $D = \frac{1.25 in - 2.6.083 in}{12 in/ft} = 0.0903 ft$
	12 in/ft
==-/	
121	A = \(\frac{1}{4} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1	2 06/25 ft 3/3 - 0 SE28+ 6
0	$r = \frac{\alpha}{A} = \frac{0.06(25 + 1)/3}{0.00641 + 12} = 9.557 + 1/3$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	D = 7.21×10-4ft/s (Appendix C)
D	D = 7.21x10-4ft/s ((Kopendix C)
	0
	R= TD = 9.557 flx. 0.0903ff = 1.20 ×103 Lami
	D 7.21×10-411/5
	5-64-64-00335 (Fa 8-6)
	$f = \frac{64}{Rc} = \frac{64}{1200} = 0.0335 (Eq. 8-5)$
	E= 5.0 ×10-8f+ (Table 8.2)
	D = 0.903ff 5.0×10-6f+ = 18100
	E 5.000 17
	(~ 1011 (5: 07)
	fr = 0.011 (Fig. 8.7) Laminar value of f is worse scenario
	Laminar value of Tis worse scenario
0 000	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 = 3.23in ·	= 3.0 => Le/0 = 12.5 (fig 10.28)
0 = 3.23in.	= 3.0 => Le/0 = 12.5 (fig 10.28)
0 0.090 3.41.12 m/4	= 3.0 => Le/o = 12.5 (fig 10.28)
1 = f Le 12 = 0.05	$= 3.0 \Rightarrow Le/o \approx 12.5 (fig 10.28)$ $535. /2.5 \cdot \frac{(9.557 ft/6)^2}{2.32.2 ft/6} = 0.95 ft$
$ \frac{1}{0} = \frac{3.25 \cdot n}{0.090344.127/64} $ $ h_{L} = f \frac{Le}{D} = \frac{v^{2}}{2g} = 0.05 $	= 3.0 => $Le/o \approx 12.5$ (fig 10.28) 535./2.5. $\frac{(9.557 ft/6)^2}{2.32.2 ft/6} = 0.95 ft$
1 = f Le 2 = 0.05	$= 3.0 \Rightarrow \text{Le/o} \approx 12.5 \text{ (fig 10.28)}$ $535./2.5 \cdot \frac{(9.5574/6)^2}{2.32.24/6} = 0.95 \text{ (fig 10.28)}$
$ \frac{1}{0} = \frac{3.25 \text{ in}}{0.090344.127/4} $ $ \frac{1}{0} = \frac{1}{0.090344.127/4} $ $ \frac{1}{0} = \frac{1}{0.090344.127/4} $ $ \frac{1}{0} = \frac{1}{0.090344.127/4} $	$= 3.0 \Rightarrow \text{Le/o} \approx 12.5 \text{ (fig 10.28)}$ $535.72.5 \cdot \frac{(9.557 \text{ ft/s})^2}{2.32.2 \text{ ft/s}^2} = \boxed{0.95 \text{ ft}}$
$ \frac{1}{0} = \frac{3.25 \text{ in}}{0.090344.127/64} $ $ \frac{1}{0} = \frac{1}{0.090344.127/64} $ $ \frac{1}{0} = \frac{1}{0.090344.127/64} $	$= 3.0 \Rightarrow \text{Le/o} \approx 12.5 \text{ (fig 10.28)}$ $535./2.5 \cdot \frac{(9.557 \text{ ft/s})^2}{2.32.2 \text{ ft/s}^2} = \boxed{0.95 \text{ ft}}$
$ \frac{1}{0} = \frac{3.25 \text{ in}}{0.090344.127/4} $ $ \frac{1}{0} = \frac{1}{0.090344.127/4} $ $ \frac{1}{0} = \frac{1}{0} = \frac{1}{2} = 0.05 $	$= 3.0 \Rightarrow Le/o \approx 12.5 (fig /0.28)$ $535./2.5 \cdot \frac{(q.557 ft/s)^2}{2.32.2 ft/s^2} = 0.95 ft$
$\frac{1}{0} = \frac{3.25 \text{ in}}{0.090344.127/44}$ $h_L = \int \frac{Le}{b} \frac{v^2}{2g} = 0.05$	$= 3.0 \Rightarrow \text{Le/o} \approx 12.5 \text{ (fig 10.28)}$ $535.72.5 \cdot \frac{(9.557 \text{ ft/s})^2}{2.32.2 \text{ ft/s}^2} = \boxed{0.95 \text{ ft}}$
$\frac{\sqrt{0} = \frac{3.25 \text{ in}}{0.090344.127/f4}}{0.090344.127/f4}$ $h_{L} = f \frac{Le}{b} \frac{v^{2}}{2g} = 0.05$	$= 3.0 \Rightarrow \text{Le/o} \approx 12.5 \text{ (fig 10.28)}$ $535.12.5 \cdot \frac{(9.557 \text{ ft/s})^2}{2.32.2 \text{ ft/s}^2} = \boxed{0.95 \text{ ft}}$
$\frac{\sqrt{0} = \frac{5.25 \text{ in}}{0.090344.127/64}}{0.090344.127/64}$ $h_{L} = f \frac{Le}{D} \frac{V^{2}}{2g} = 0.05$	$= 3.0 \Rightarrow \text{Le/o} \approx 12.5 \text{ (fig 10.28)}$ $535./2.5 \cdot \frac{(9.557 \text{ ft/s})^2}{2.32.2 \text{ ft/s}^2} = \boxed{0.95 \text{ ft}}$
$\frac{\sqrt{0} = \frac{3.25 \text{ in}}{0.090344.120/44}}{0.090344.120/44}$ $h_L = f \frac{Le}{b} \frac{v^2}{2g} = 0.09$	$535./2.5.\frac{(9.557)(4/5)^{2}}{2.32.2} = 0.95 + 1$
$\frac{\sqrt{0} = \frac{3.25 \text{ in}}{0.090344.120/f4}}{0.090344.120/f4}$ $h_{L} = f \frac{Le}{b} \frac{v^{2}}{2g} = 0.09$	$535./2.5.\frac{(9.557)(1/6)^{2}}{2.32.2} = 0.95 + 1$
h_= f = = 0.05	$535./2.5.\frac{(9.557)(1/6)^{2}}{2.32.2} = 0.95 + 1$
h_= f = 2 = 0.05	$535./2.5.\frac{(9.557)(1/6)^{2}}{2.32.2} = 0.95 + 1$
h_= f = = 0.05	535./2.5. \(\frac{q.557 ft/s}{2.32.2 ft/s} = \[0.95 ft \]
h_= f = = 0.05	$535./2.5.\frac{(9.557 + 1/6)^{2}}{2.32.2 + 1/62} = 0.95 + 1$
h_= f \frac{1}{2} = 0.05	535. /2.5 · (9.557 ff/s) ² = [0.95 ft]
h_= f = = 0.05	$535./2.5.\frac{(9.557)(6)^{2}}{2.32.2} = 0.95 + 1$
h_= f = = 0.05	535. /2.5 · (9.557 ff/s) ² = [0.95 ft]
h_= f = = 0.05	535./2.5. \(\frac{(q.557\ft/\kappa)^2}{2.32.2\ft/\kappa_2} = \[0.95\ft + \]
h_= f = = 0.05	535./2.5. <u>(9.557 ft/s)</u> = 0.95 ft
h_= f = = 0.05	535./2.5. \(\frac{(q.557\ft/\kappa)^2}{2.32.2\ft/\kappa_2} = \[0.95\ft + \]
h_= f = = 0.09	535./2.5. <u>(9.557 ft/s)</u> = 0.95 ft

MET 330

HW. 3.2

PROBLEMS 5, 13, 15, 22, 23


WORK DONE IN A GROUP BY:

Spencer Reed

Joel Thomas

Nick Dunham

Olaoluwa Oduntan

4

4

•

Pz = 12,500 KN/m2

$$V_1 = Q_2 = 7 \cdot 0.015 \text{m}^3/\text{s} = 7 \cdot V_2 = 7.874 \text{m/s}$$

Az 0.001905m^2

$$P_{1} = 8.8 \times N/m^{2} \times \left(\frac{12.500 \times N/m^{3}}{2.500 \times N/m^{3}} \right) \left(\frac{7.874 \text{ m.k}^{2}}{0.892 \text{ m.ls}^{2}} \right)$$

$$P_{1} = 8.8 \times N/m^{3} \times \left(\frac{12.500 \times N/m^{3}}{8.80 \times N/m^{3}} \right) \left(\frac{7.874 \text{ m.k}^{2}}{0.892 \text{ m.ls}^{2}} \right)$$

$$P_{1} = 7.5 \times \frac{1}{5.29} + 2 \times \times \frac{1}{29} \right) + \frac{1}{5.50} \times \frac{1}{29} + \frac{1}{29} \times \frac{1}$$

Section 2)
$$D/L = 0.0493n = 1071.74$$
 4.6×10^{-5}

Re = 7.874m/s y 0.0493m = 18,372
 $0.000021m^3/s$

$$5 = 0.25 = 0.0284$$

$$\left[\log\left(\frac{2}{3.7 \times 1071} + \frac{5.7}{16.372^{10}}\right)\right]^{\frac{1}{2}}$$

$$h_{L_2} = 0.0284 \times \left(\frac{8cm}{2.048L} \times \frac{7.874m/s^2}{247.61m/s^2}\right) = 145.63m$$
Elbows) $2 \times \frac{1}{2} \times$

he = 0.386 x 0.8922 = 0.0156m

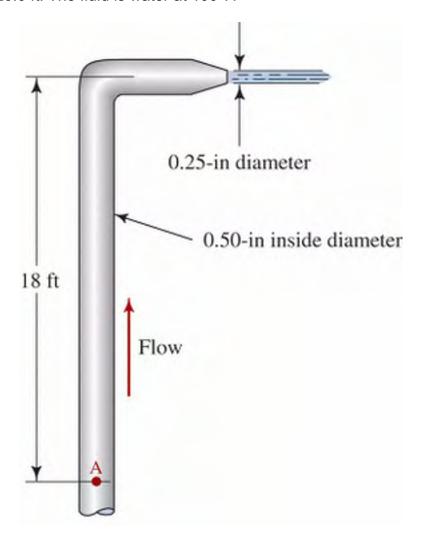
P, = 8.80 KW/m3 × (12,300 KW/m3 + 7.874m13 + 0.892m8 + 4.5m +(1.79m + 145.63m + 2,44m + 0.0156m)

P1 = 8,80 KN/m3 × (12,600 KN/m3 + 7.874mts-0,892mts + 45m + 149,87m)

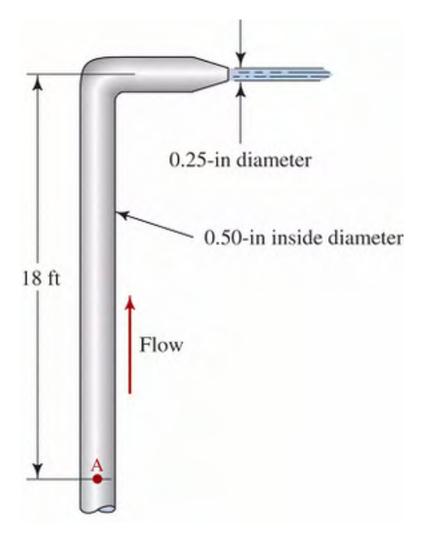
P, = 13,861 58 xu/m3 = 13,861MPa

-

-0


1

Homework 3.1


<u>11.13</u>

Problem:

A device designed to allow cleaning of walls and windows on the second floor of homes is similar to the system shown. Determine the velocity of flow from the nozzle if the pressure at the bottom is (a) 20 psig and (b) 80 psig. The nozzle has a loss coefficient *K* of 0.15 based on the outlet velocity head. The tube is smooth drawn aluminum and has an ID of 0.50 in. The 90° bend has a radius of 6.0 in. The total length of straight tube is 20.0 ft. The fluid is water at 100°F.

Solution: Since fluid is moving, Bernoulli's equation will be used and a reference line drawn and points labeled:

From Bernoulli's equation, there is no pump or turbine, Z1 is at the level of the reference, and P2 is zero (vented to the atmosphere), therefore:

$$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} = \frac{V_2^2}{2g} + z_2 + h_L$$
. Re-arranging for known values: $\frac{P_1}{\gamma} - z_2 = \frac{V_2^2 - V_1^2}{2g} + h_L$ (1).

Because there is a nozzle, the velocity increases in the system. The energy losses are made up of: $h_{pipe} = f * \frac{l}{D} * \frac{v_1^2}{2g}$, $h_{bend} = f * \frac{Le}{D} * \frac{v_1^2}{2g}$, $h_{nozzel} = k * \frac{v_1^2}{2g}$ (2). Velocity is a

function of flow rate, therefore: $V = \frac{Q}{A}$, $A = \pi * \frac{D^2}{4} \to V_1 = \frac{Q_1}{\pi * \frac{0.5^2}{4}}, V_2 = \frac{Q_2}{\pi * \frac{0.25^2}{4}}$. It can now

be said: $V_2 = 4V_1$ (3)

Integrating all equations:

$$\frac{L_e}{D} = \frac{r}{D}(chart) \to \frac{6in}{0.5in} = 12, from figure 10.28: \frac{L_e}{D} = 34$$

$$\frac{P_1}{\gamma} - z_2 = \frac{V_2^2 - (0.25v_2)^2}{2g} + \left(f * \frac{20ft}{\frac{0.5in}{12}} * \frac{(0.25v_2)^2}{2g}\right) + \left(f * 34 * \frac{(0.25v_2)^2}{2g}\right) + 0.5\left(\frac{v_2^2}{2g}\right)$$

$$f = \frac{0.25}{\log\left(\frac{1}{3.7 * (\frac{D}{2})} + \frac{5.74}{N_R^{0.9}}\right)^2}$$

Given:

$$l = 20ft$$
, $D = 0.5in$, $K_{nozzel} = 0.5$, $Z_2 = 18ft$, $T = 100$ °F

From the book:

$$\begin{split} \gamma_{water@100} &= \frac{62lb}{ft^3}, \quad \rho = \frac{1.93slugs}{ft^3}, \quad \mu = 1.42*10^{-5}lb - \frac{s}{ft^2} \quad (table\ A.\ 2) \\ \varepsilon &= 5.0*10^{-6}ft \quad (table\ 8.2) \end{split}$$

Calculating in Excel:

Pressure	V2 (ft/s)	LHS	RHS	% diff
20PSI	32.5	28.452	28.905	1.60%
80PSI	81.0	167.806	168.853	0.62%

11.15	Water at 40°C is flowing from A to B through the system
	shown in Fig. P11.15. Determine the volume flow rate
	of water if the vertical distance between the surfaces of
	the two reservoirs is 10 m. The elbows are standard.

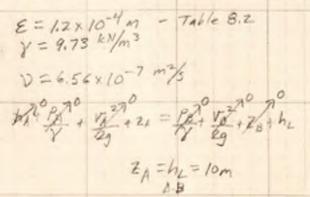


FIGURE P11.15 Water flow from reservoir for Problem 11.15.

11.22 The tank shown in Fig. P11.22 is to be drained to a sewer. Determine the size of new Schedule 40 steel pipe that will carry at least 400 gal/min of water at through the system shown. The total length of pipe is 75 ft.

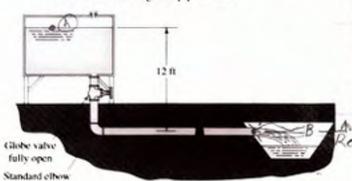


FIGURE P11.22 Sewer drain for Problem 11.22.

Assume 60°F 8=62.4 16/513 V = 1.21 x p-5f42/5 } Table A.Z

Krave = 340 ft - Fig. 10.15 Kelbow = 30 ft - Fig. 10.23

70 Kentry = 0.5 - Fig 10.14 (Square-edge)

Rexit = 1.0 - 4.10-4

Rexit = 1.2 ft

Losses h_ = h_ + h_ + h_ = (f + Knalve + Kelbon) v2
A-8 Pipe value elbon = (f + Knalve + Kelbon) v2 Globe valve

he = 12+ = [f = + fr (340+30) + 0.5+1-0] -29

1. List pipe diameters for standard sizes 2. calculate to VE, Re, fift for each size 3. calculate he for each size.

4. select appropriate size; 5" NPS: h= 6.66 ft; 4" NPS is too small w/ h= 18.25ft

Oladuwa A. Oduntan

HW 3.2

where P = 0, P = 0, and V = 0.

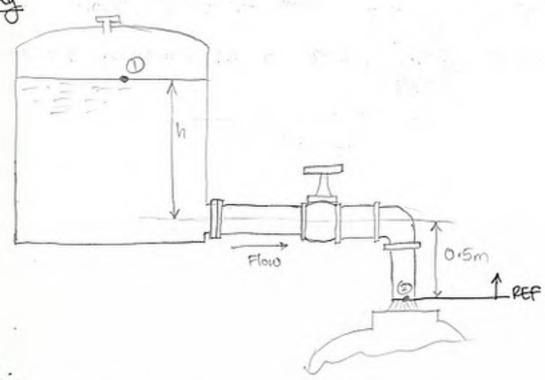
11.23 Given

Fluid > gasoline

59 = 0.68

T = 25°C

Q = 1500L/min (1500L/min x 1 m3/s) = 0.025 m3/s


Pipe = DN 90 Schedule 40 steel pipe with A = 6.381×10-3 m2

Gate valve 1/2 open.

Required

Find heroft in the tank. Neglect the energy locus is the pripe friction, but consider miner losses.

Drawing

Calculation

Using the Bernoulli's equation, $\frac{P_1'+Z_1+\frac{\sqrt{2}}{2g}\pm\frac{P_1'}{2g}+Z_2+\frac{\sqrt{2}}{2g}+h_{4-2}}{2g}+h_{4-2}$

Z-Z= V2 + h4-2

> V = 3.91788 m/s ~ 3.92 m/s

$$\begin{array}{l} h_{112} > h_{ent.} + h_{vol} + h_{elb} \Rightarrow k_{et} \frac{v^2}{2g} + k_{vol} \frac{v^2}{2g} + k_{elb} \frac{v^2}{2g} \Rightarrow \frac{v^2}{2g} \left(k_{ent.} + k_{vol} + k_{elb} \right). \\ K_{vol} = 160 f_{1} & \text{where } f_{1} = 0.017 \\ k_{vol} = 160 \left(0.017 \right) \Rightarrow k_{vol} = 2.72 \\ k_{elb} = 30 f_{1} \\ \Rightarrow 30 \left(0.017 \right) \Rightarrow k_{elbow} = 0.51 \\ h_{1+2} = \frac{\left(3.92 \right)^2}{2 \times 9.81} \left(0.5 + 2.72 + 0.51 \right) = 2.92 \text{ m}. \\ \text{Substituting } h_{1,1-2} & \text{into egn (1)}, \\ Z_{1} - Z_{2} = \frac{V^2}{2g} + 2.92 & \text{where } Z_{1} - Z_{2} = \left(h + 0.5 \right) \text{m}. \\ h + 0.5 = \frac{\left(3.92 \right)^2}{2 \times 9.81} + 2.92 \Rightarrow h + 0.5 = 3.7032 \Rightarrow 3.7032 - 0.5 \\ \hline k_{1} = 3.2032 \\ \hline k_{2} = 3.2032 \\ \hline k_{3} = 3.2032 \\ \hline k_{4} = 3.20 \text{ m}. \end{array}$$

MET 330 HW. 3.3 PROBLEMS 17, 19, 22, 23, 25 & 34

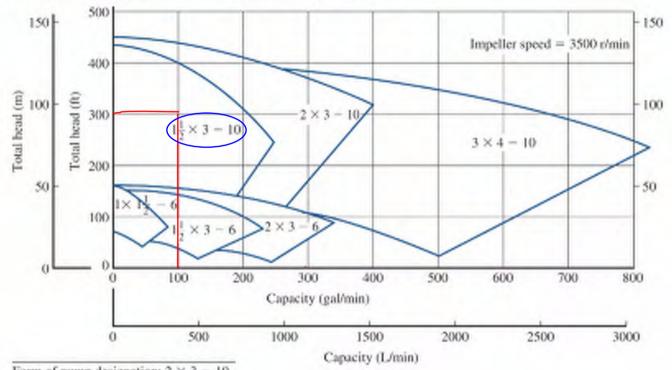
WORK DONE IN A GROUP BY:
Spencer Reed
Joel Thomas
Nick Dunham
Olaoluwa Oduntan

1		
a		
	Oladura A. Othulan HW 3.4	Pg I
13.17	Required	
	14 the speed of notation of the impoller is cut in half, he	no doos the total head
	capability change?	
	Estudion Estudion	
	For a contribuoil pump.	
	$Na_1 = N_1$	
	$Na_2 \setminus N_2$	
	Lef $(N_0,/N_0)=x$ and $(N_1/N_2)^2=y$. We have,	
	$x = (y)^2$	
<u>-</u>	If y & cut in half,	
	$x = \left(\frac{y}{2}\right)^2 \Rightarrow x = \frac{y^2}{4} $ (x is directly purp	external to 1471
	: If the speed of rotation is the impeller is cut in b	ralf, the total head capacity is
A	cut by a factor of 4.	-
13.19	Required	
	If the diameter of the impeller is reduced by 25 percent, how	much does the apacity change?
	Solution	
	For a contribugal pump casing,	
<u></u>	$\frac{Q_1 = D_1}{Q_2}$	
	Let $(Q_1/Q_2) = X$ and $(P_1/D_2) = y$. We have,	
	X=y	
	If y is out by 25%,	11. 3
,		4 rs y).
	: If the diameter of the impeller is reduced by 25%,	the capacity changes by 25%.
13.22	11/2×3-6: Describes a pump with a 11/2-in dischange conne	ction, a 3-in suction connection,
<u>17</u>	and a casing that can accommodate an impeller with a dia	meter of 6 in or smaller.
		· · · · · · · · · · · · · · · · · · ·

13.23) News to de how 100 gal/min H20

HW 3.41

Total Head of 300 ft.

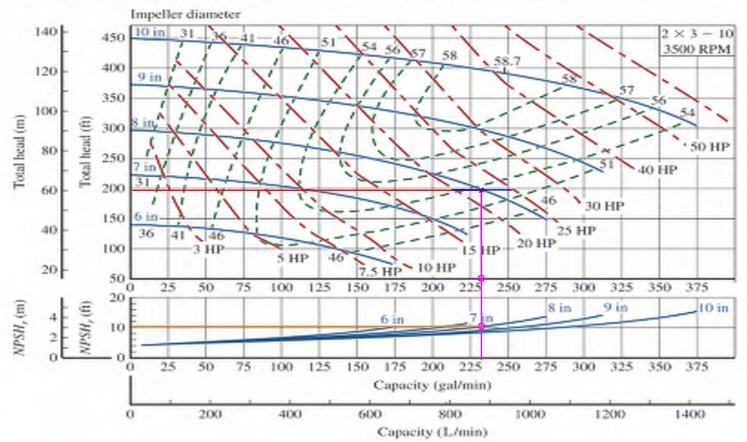

1/2 x 3-10 based on figur 13.22

22,23,25,

34

Figure 13.22

Composite rating chart for a line of centrifugal pumps.



Form of pump designation: $2 \times 3 - 10$

Casing class—Nominal size (in inches) of largest impeller
 Suction connection size (nominal inch)
 Discharge connection size (nominal inch)

Figure 13.28

Complete pump performance chart for a $2 \times 3 - 10$ centrifugal pump at 3500 rpm.

NICK DUNHAM

Homework 3.4

13.39

Problem: Compute the specific speed for a pump operating at 1750 rpm delivering 12,000 gal/min of water at a total head of 300 ft.

Solution: Specific speed is given by the equation $N_{SS} = \frac{N\sqrt{Q}}{H^{\frac{3}{4}}}$, therefore,

$$N_{SS} = \frac{1,750rpm * \sqrt{12,000 \frac{gal}{min}}}{300ft} = 2,659 RPM$$

13.59

Problem: Determine the *NPSH* available when a pump draws gasoline at 110°F (sg=0.65) from an outside storage tank whose level is 4.8 ft above the pump inlet. The energy losses in the suction line total 0.87 ft and the atmospheric pressure is 14.28 psia.

Solution: Since the pump is below the storage tank, $NPSH_a = h_{sp} + h_s - h_f - h_{vp}$

Where:
$$h_{sp} = \frac{P_{sp}}{\gamma} \rightarrow \frac{14.28 \frac{lb}{in^2} * \left(\frac{12in}{1ft}\right)^2}{0.65 * \frac{62.4lb}{ft^3}} = 50.698 ft$$
, $h_s = 4.8 ft$, $h_f = 0.87 ft$ and

 $h_{vp}\cong 52ft\ (gasoline\ @110^\circ F, table\ 13.37).$ Therefore: $NPSH_a=50.698ft+4.8ft-0.87ft-52ft={\bf 2.628}ft$

<u>13.61</u>

Problem: Repeat Problem 13.59 if the pump is 27 in above the fluid surface.

Solution: Since the pump is above the fluid surface, the only difference is that h_s

becomes $h_s = -27in$. Thus: $NPSH_a = 50.698ft - \left(\frac{27in}{12in}\right) - 0.87ft - 52ft = -4.422ft$.

Since this value is negative. This pump is extremely susceptible to cavitation.

MET 330 HW. 3.3 PROBLEMS 17, 19, 22, 23, 25 & 34

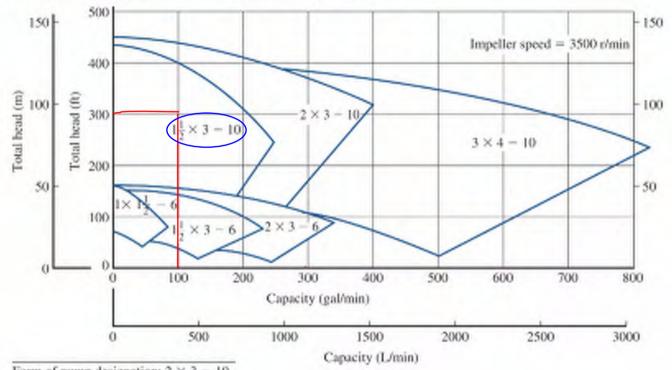
WORK DONE IN A GROUP BY:
Spencer Reed
Joel Thomas
Nick Dunham
Olaoluwa Oduntan

1		
a		
	Oladura A. Othulan HW 3.4	Pg I
13.17	Required	
	14 the speed of notation of the impoller is cut in half, he	no doos the total head
	capability change?	
	Estudion Estudion	
	For a contributed pump,	
	$\frac{\eta \alpha_1}{\alpha_1} = \frac{\eta \gamma_1}{\gamma_1}$	
	$Na_2 \setminus N_2$	
	Lef $(N_0,/N_0)=x$ and $(N_1/N_2)^2=y$. We have,	
	$x = (y)^2$	
<u>-</u>	If y & cut in half,	
	$x = \left(\frac{y}{2}\right)^2 \Rightarrow x = \frac{y^2}{4} $ (x is directly purp	external to 1471
	: If the speed of rotation is the impeller is cut in b	ralf, the total head capacity is
A	cut by a factor of 4.	-
13.19	Required	
	If the diameter of the impeller is reduced by 25 percent, how	much does the apacity change?
	Solution	
	For a contribugal pump casing,	
<u></u>	$\frac{Q_1 = D_1}{Q_2}$	
	Let $(Q_1/Q_2) = X$ and $(P_1/D_2) = y$. We have,	
	X=y	
	If y is out by 25%,	11. 3
,		4 rs y).
	: If the diameter of the impeller is reduced by 25%,	the capacity changes by 25%.
13.22	11/2×3-6: Describes a pump with a 11/2-in dischange conne	ction, a 3-in suction connection,
<u>17</u>	and a casing that can accommodate an impeller with a dia	meter of 6 in or smaller.
		· · · · · · · · · · · · · · · · · · ·

13.23) News to de how 100 gal/min H20

HW 3.41

Total Head of 300 ft.

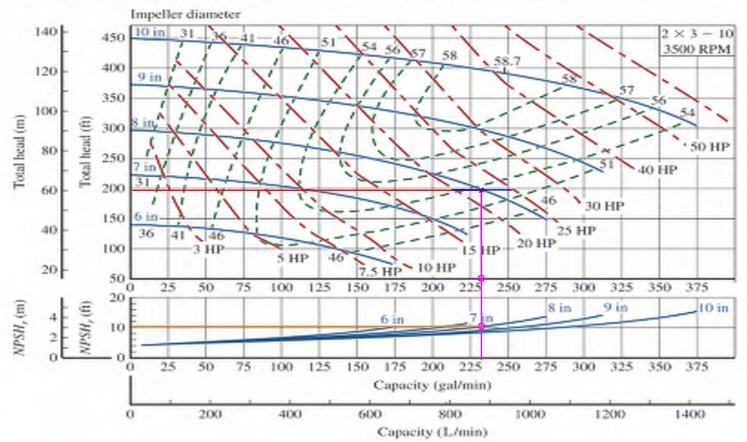

1/2 x 3-10 based on figur 13.22

22,23,25,

34

Figure 13.22

Composite rating chart for a line of centrifugal pumps.



Form of pump designation: $2 \times 3 - 10$

Casing class—Nominal size (in inches) of largest impeller
 Suction connection size (nominal inch)
 Discharge connection size (nominal inch)

Figure 13.28

Complete pump performance chart for a $2 \times 3 - 10$ centrifugal pump at 3500 rpm.

NICK DUNHAM

Homework 3.4

13.39

Problem: Compute the specific speed for a pump operating at 1750 rpm delivering 12,000 gal/min of water at a total head of 300 ft.

Solution: Specific speed is given by the equation $N_{SS} = \frac{N\sqrt{Q}}{H^{\frac{3}{4}}}$, therefore,

$$N_{SS} = \frac{1,750rpm * \sqrt{12,000 \frac{gal}{min}}}{300ft} = 2,659 RPM$$

13.59

Problem: Determine the *NPSH* available when a pump draws gasoline at 110°F (sg=0.65) from an outside storage tank whose level is 4.8 ft above the pump inlet. The energy losses in the suction line total 0.87 ft and the atmospheric pressure is 14.28 psia.

Solution: Since the pump is below the storage tank, $NPSH_a = h_{sp} + h_s - h_f - h_{vp}$

Where:
$$h_{sp} = \frac{P_{sp}}{\gamma} \rightarrow \frac{14.28 \frac{lb}{in^2} * \left(\frac{12in}{1ft}\right)^2}{0.65 * \frac{62.4lb}{ft^3}} = 50.698 ft$$
, $h_s = 4.8 ft$, $h_f = 0.87 ft$ and

 $h_{vp}\cong 52ft\ (gasoline\ @110^\circ F, table\ 13.37).$ Therefore: $NPSH_a=50.698ft+4.8ft-0.87ft-52ft={\bf 2.628}ft$

<u>13.61</u>

Problem: Repeat Problem 13.59 if the pump is 27 in above the fluid surface.

Solution: Since the pump is above the fluid surface, the only difference is that h_s

becomes $h_s = -27in$. Thus: $NPSH_a = 50.698ft - \left(\frac{27in}{12in}\right) - 0.87ft - 52ft = -4.422ft$.

Since this value is negative. This pump is extremely susceptible to cavitation.