# MET 335W

Orifice Plate Coefficients March 3, 2019 William McClenney

wmccl001@odu.edu

#### **Experiment Title:** Orifice Plate Coefficients

#### **Purpose:**

- 1. The purpose of this experiment is to compute the friction losses due to an orifice plate in a flow path of an axial turbofan and how it varies as a function of the Reynolds number.
- 2. The application of Bernoulli's equation to the orifice plates will be used to calculate the orifice plate coefficient.
- 3. The actual volumetric flow rate through a venturi tube will be measured against adjustments to the fan speed.
- 4. The calculations obtained will be used to plot a graph of the coefficient of the orifice ( $C_0$ ) versus the Reynolds number ( $N_R$ , actual) for each size orifice, all on one graph.
- 5. The results obtained in the experiment and the curves developed will be discussed.

#### **Theoretical Considerations:**

Orifice plates introduce frictional losses to a system. In this lab, the losses due to friction, as depicted in the orifice coefficient, will be calculated and compared to the Reynolds number. Using Bernoulli's equation, flow measures with the orifice plates can be calculated. Measurement of the flow rate is accomplished with a venturi attached to the end of the apparatus.

#### **Description of Apparatus:**

- 1. 115 volt AC variable speed cradle-mounted fan motor
- 2. Output shaft (attached to the motor)
- 3. Turbofan (attached to the output shaft)
- 4. Control panel (containing main switches and the fan speed control knob)
- 5. 3 metal orifice plates (ranging incrementally from small, medium and large openings)
- 6. Discharge ducting (with flow straightener and venturi)
- 7. Orifice clamp (for orifice plate insertion)
- 8. Digital manometer (calibrated in inches of water)

### **Step-by-Step Procedure:**

- 1. The main power switch and the fan control switch on the control panel were switched on to apply voltage to the test instrument.
- 2. The digital manometer display board switch was turned on to apply voltage to the digital readout displays.
- 3. The manometer was zeroed out so that all display indicate no readings (zero).
- 4. Among the 3 available metal orifice plates, the orifice plate with the smallest opening was first selected to be installed in the air flow tube (it was noted that the orifice plates had beveled edges on one side and flat edges on the opposite side).
- 5. The clamp on the air flow tube was released and the two sections of tube were separated slightly.
- 6. The orifice plate was seated firmly between the separated sections of air flow tube, assuring the flat edge of the orifice plate is positioned facing upstream (to avoid a nozzle effect) towards the motor.
- 7. The two sections of air flow tube were reconnected against the orifice plate, and the clamp was secured around the orifice plate and the flanges of the two sections.
- 8. The fan speed control knob was then dialed clockwise to 80% power in order to increase the revolutions per minute (rpm) of the output shaft for the fan motor.
- 9. The orifice head (H<sub>0</sub>), as indicated on the digital readout in inches of water, was

recorded in the data table.

- 10. The venturi head  $(H_V)$ , as indicated on the digital readout in inches of water, was recorded in the data table.
- 11. Once the orifice readings were recorded, the fan speed control knob was then dialed counterclockwise to reduce the power to 75% for the output shaft for the fan motor.
- 12. Again, the orifice head readings were taken from the digital manometer display and recorded on the data sheet.
- 13. The fan speed control knob was then dialed counterclockwise to reduce the power to 70% for the output shaft for the fan motor.
- 14. The orifice head readings were taken from the digital manometer display and recorded on the data sheet.
- 15. This process was repeated until the fan speed was reduced down to 40% and all orifice head readings had been recorded.
- 16. The fan speed knob was dialed completely down to 0% and the fan allowed to completely stop so that air pressure on the orifice plate was no longer present.
- 17. The clamp on the air flow tube was released and the two sections of tube were separated slightly.
- 18. The orifice plate in the air flow tube was removed.
- 19. The orifice plate with the medium sized opening was seated firmly between the separated sections of air flow tube, assuring the flat edge of the orifice plate is positioned facing upstream (to avoid a nozzle effect) towards the motor.
- 20. The two sections of air flow tube were reconnected against the orifice plate, and the clamp was secured around the orifice plate and the flanges of the two sections.
- 21. The fan speed control knob was then dialed clockwise to 80% power in order to increase the revolutions per minute (rpm) of the output shaft for the fan motor.
- 22. The orifice head (H<sub>0</sub>), as indicated on the digital readout in inches of water, was recorded in the data table.
- 23. The venturi head  $(H_V)$ , as indicated on the digital readout in inches of water, was recorded in the data table.
- 24. Once the orifice readings were recorded, the fan speed control knob was then dialed counterclockwise to reduce the power to 75% for the output shaft for the fan motor.
- 25. The entire process was repeated with the medium sized orifice plate until incrementally reaching 40% speed, and the readings were recorded in the data chart.
- 26. Again, the fan speed knob was dialed completely down to 0% and the fan allowed to completely stop so that air pressure on the orifice plate was no longer present.
- 27. The orifice plate was replaced with the third orifice plate with the largest opening.
- 28. The entire process was repeated with the medium sized orifice plate and the readings recorded in the data chart, completing the experiment.

# **Recorded Data Tables:**

# Table 1: Orifice Coefficient Lab Raw Data

| Ambient Temperature:             | 75.0° F      | Barometric Pressure:                | 29.95 inches Hg |
|----------------------------------|--------------|-------------------------------------|-----------------|
| Tube Diameter (D <sub>T</sub> ): | 5.125 inches | Venturi Diameter (D <sub>V</sub> ): | 2.562 inches    |

| Orifice diameter | Motor Power<br>(%) | Orifice reading (h <sub>0</sub> )<br>(inches of water) | Venturi reading (h <sub>V</sub> )<br>(inches of water) |  |
|------------------|--------------------|--------------------------------------------------------|--------------------------------------------------------|--|
|                  | 80                 | 3.00                                                   | 0.027                                                  |  |
| 1.03 inches      | 75                 | 2.76                                                   | 0.023                                                  |  |
|                  | 70                 | 2.48                                                   | 0.020                                                  |  |
|                  | 65                 | 2.17                                                   | 0.018                                                  |  |
|                  | 60                 | 1.91                                                   | 0.013                                                  |  |
|                  | 55                 | 1.65                                                   | 0.013                                                  |  |
|                  | 50                 | 1.41                                                   | 0.010                                                  |  |
|                  | 45                 | 1.21                                                   | 0.008                                                  |  |
|                  | 40                 | 0.99                                                   | 0.007                                                  |  |

| Orifice diameter | Motor Power<br>(%) | Orifice reading (h <sub>0</sub> )<br>(inches of water) | Venturi reading (h <sub>V</sub> )<br>(inches of water) |  |
|------------------|--------------------|--------------------------------------------------------|--------------------------------------------------------|--|
|                  | 80                 | 2.24                                                   | 0.335                                                  |  |
| 2.055 inches     | 75                 | 2.04                                                   | 0.313                                                  |  |
|                  | 70                 | 1.79                                                   | 0.279                                                  |  |
|                  | 65                 | 1.59                                                   | 0.249                                                  |  |
|                  | 60                 | 1.40                                                   | 0.215                                                  |  |
|                  | 55                 | 1.20                                                   | 0.182                                                  |  |
|                  | 50                 | 1.04                                                   | 0.157                                                  |  |
|                  | 45                 | 0.864                                                  | 0.132                                                  |  |
|                  | 40                 | 0.72                                                   | 0.109                                                  |  |

| Orifice diameter | Motor Power<br>(%) | Orifice reading (h <sub>0</sub> )<br>(inches of water) | Venturi reading (h <sub>v</sub> )<br>(inches of water) |  |
|------------------|--------------------|--------------------------------------------------------|--------------------------------------------------------|--|
| 4.1 inches       | 80                 | 0.515                                                  | 2.5                                                    |  |
|                  | 75                 | 0.463                                                  | 2.23                                                   |  |
|                  | 70                 | 0.402                                                  | 1.95                                                   |  |
|                  | 65                 | 0.352                                                  | 1.72                                                   |  |
|                  | 60                 | 0.31                                                   | 1.5                                                    |  |
|                  | 55                 | 0.261                                                  | 1.292                                                  |  |
|                  | 50                 | 0.225                                                  | 1.1                                                    |  |
|                  | 45                 | 0.192                                                  | 0.932                                                  |  |
|                  | 40                 | 0.158                                                  | 0.777                                                  |  |

$$Q_{max} = C_v A_{Throat} \sqrt{2ghv \, \underline{\gamma \, manometer}}_{\gamma \, air}$$

$$= (1) \, (0.0356 \, ft^2) \, \sqrt{(2)(32.2 \, ft/s)} \, (0.00225 \, ft) \, (\underline{62.4 \, lb/ft^3})}_{(0.0742 \, lb/ft^3)}$$

$$= (0.0356 \, ft^2) \, \sqrt{[64.4 \, ft/s]} \, [0.00225 \, ft2] \, [841]}_{0.938}$$

$$= 0.4058 \, ft^3/s$$

$$V_{max} = \underline{Qmax}_{A_{Duct}} = \underline{0.4058 \, ft^3/s}_{0.1431 \, ft^2} = 2.836 \, ft/s$$

$$N_{Rmax} = \underline{VmaxD_{tube}}_{V_{kair}} = (\underline{2.836 \, ft/s}) \, (0.427 \, ft)_{kair} = 7295$$
\*air kinematic viscosity, at 75 degrees F, atmospheric pressure of 760 mm Hg  

$$C_v = 0.986 - 471.5 = 0.986 - 471.5 = 0.9214$$

$$C_v = 0.986 - \frac{4/1.5}{N_{\text{Rmax}}} = 0.986 - \frac{4/1.5}{7295} = 0.9214$$

$$Q_{duct} = C_v Q_{max} = (0.9214) (0.4058 \text{ ft}^3/\text{s}) = 0.3739 \text{ ft}^3/\text{s}$$

$$N_{RDuct} = C_v N_{Rmax} = (0.9214) (7295) = 6722$$

$$V_{duct} = C_v V_{max} = (0.9214)(2.836 \text{ ft/s}) = 2.613 \text{ ft/s}$$

$$Co = \underbrace{Q_{actual}}_{A_{orifice}} \sqrt{\frac{1 - [A_{orifice}/A_{duct}}{2gh_v \, \frac{\gamma \, manometer}{\gamma \, air}}}_{\gamma \, air} = \underbrace{\frac{1.383 \, ft^3/s}{0.023 \, ft^2}}_{0.023 \, ft^2} \sqrt{\frac{1 - [0.0231 ft^2/0.1431 \, ft^2]}{[32.2 \, ft/s^2] [0.1867][\underline{62.4 \, lb/ft^3}]}}_{0.0742 lb/ft^3}$$

$$= 0.5902$$

#### **Calculated Data Table:**

| Table 2: Office Coefficient Lab Calculated Data | Table 2: | Orifice | <b>Coefficient Lab</b> | Calculated | Data |
|-------------------------------------------------|----------|---------|------------------------|------------|------|
|-------------------------------------------------|----------|---------|------------------------|------------|------|

| Orifice<br>Diameter<br>(in) | Power<br>(%) | Orifice<br>Reading<br>(ft H <sub>2</sub> O) | Venturi<br>Reading<br>(ft H <sub>2</sub> O) | Maximum<br>Flow Rate<br>(ft <sup>3</sup> /sec) | Maximum<br>Velocity<br>(ft/sec) | Maximum<br>Reynolds<br>Number | Venturi<br>Coefficient | Duct<br>Flow Rate<br>(ft <sup>3</sup> /sec) | Duct<br>Reynolds<br>Number | Duct<br>Velocity<br>(ft/sec) | Orifice<br>Coefficient |
|-----------------------------|--------------|---------------------------------------------|---------------------------------------------|------------------------------------------------|---------------------------------|-------------------------------|------------------------|---------------------------------------------|----------------------------|------------------------------|------------------------|
| -                           | 80           | 0.2500                                      | 0.0023                                      | 0.406                                          | 2.836                           | 7295                          | 0.9214                 | 0.3739                                      | 6722                       | 2.613                        | 0.5523                 |
|                             | 75           | 0.2300                                      | 0.0019                                      | 0.375                                          | 2.621                           | 6741                          | 0.9161                 | 0.3435                                      | 6175                       | 2.401                        | 0.5290                 |
|                             | 70           | 0.2060                                      | 0.0017                                      | 0.349                                          | 2.439                           | 6273                          | 0.9108                 | 0.3170                                      | 5713                       | 2.221                        | 0.5159                 |
|                             | 65           | 0.1808                                      | 0.0015                                      | 0.331                                          | 2.313                           | 5949                          | 0.9067                 | 0.3001                                      | 5394                       | 2.097                        | 0.5210                 |
| 1.03                        | 60           | 0.1590                                      | 0.0011                                      | 0.281                                          | 1.964                           | 5052                          | 0.8927                 | 0.2508                                      | 4509                       | 1.753                        | 0.4646                 |
|                             | 55           | 0.1375                                      | 0.0011                                      | 0.281                                          | 1.964                           | 5052                          | 0.8927                 | 0.2508                                      | 4509                       | 1.753                        | 0.4646                 |
|                             | 50           | 0.1175                                      | 0.0008                                      | 0.247                                          | 1.726                           | 4440                          | 0.8798                 | 0.2173                                      | 3906                       | 1.519                        | 0.4681                 |
|                             | 45           | 0.1008                                      | 0.0007                                      | 0.220                                          | 1.537                           | 3954                          | 0.8668                 | 0.1907                                      | 3427                       | 1.332                        | 0.4467                 |
|                             | 40           | 0.0825                                      | 0.0006                                      | 0.206                                          | 1.439                           | 3702                          | 0.8586                 | 0.1768                                      | 3178                       | 1.235                        | 0.4546                 |
| 2.055                       | 80           | 0.1867                                      | 0.0279                                      | 1.429                                          | 9.986                           | 25687                         | 0.9676                 | 1.3830                                      | 24854                      | 9.662                        | 0.5902                 |
|                             | 75           | 0.1700                                      | 0.0261                                      | 1.381                                          | 9.651                           | 24825                         | 0.9670                 | 1.3350                                      | 24005                      | 9.332                        | 0.5970                 |
|                             | 70           | 0.1490                                      | 0.0233                                      | 1.304                                          | 9.112                           | 24438                         | 0.9667                 | 1.2606                                      | 23624                      | 8.809                        | 0.6021                 |
|                             | 65           | 0.1325                                      | 0.0208                                      | 1.232                                          | 8.609                           | 22145                         | 0.9647                 | 1.1880                                      | 21363                      | 8.305                        | 0.6017                 |
|                             | 60           | 0.1167                                      | 0.0179                                      | 1.144                                          | 7.994                           | 20563                         | 0.9631                 | 1.0170                                      | 19804                      | 7.699                        | 0.5151                 |
|                             | 55           | 0.1000                                      | 0.0152                                      | 1.054                                          | 7.363                           | 18940                         | 0.9611                 | 1.0120                                      | 18203                      | 7.076                        | 0.5900                 |
|                             | 50           | 0.0867                                      | 0.0131                                      | 0.978                                          | 6.836                           | 17584                         | 0.9592                 | 0.9383                                      | 16866                      | 6.557                        | 0.6155                 |
|                             | 45           | 0.0720                                      | 0.0110                                      | 0.897                                          | 6.269                           | 16125                         | 0.9567                 | 0.8582                                      | 15426                      | 5.997                        | 0.5896                 |
|                             | 40           | 0.0600                                      | 0.0091                                      | 0.815                                          | 5.695                           | 14649                         | 0.9538                 | 0.7772                                      | 13972                      | 5.431                        | 0.5849                 |
|                             | 80           | 0.0429                                      | 0.2083                                      | 3.904                                          | 27.282                          | 70177                         | 0.9793                 | 3.8230                                      | 68724                      | 26.717                       | 0.6652                 |
|                             | 75           | 0.0386                                      | 0.1858                                      | 3.687                                          | 25.762                          | 66267                         | 0.9789                 | 3.6090                                      | 64868                      | 25.218                       | 0.6619                 |
|                             | 70           | 0.0335                                      | 0.1625                                      | 3.448                                          | 25.095                          | 64551                         | 0.9787                 | 3.3745                                      | 63176                      | 24.560                       | 0.6642                 |
| 4.1                         | 65           | 0.0293                                      | 0.1433                                      | 3.238                                          | 22.628                          | 58206                         | 0.9779                 | 3.1660                                      | 56919                      | 22.128                       | 0.6220                 |
|                             | 60           | 0.0258                                      | 0.1250                                      | 3.024                                          | 21.132                          | 54358                         | 0.9773                 | 2.9550                                      | 52906                      | 20.652                       | 0.6626                 |
|                             | 55           | 0.0218                                      | 0.1077                                      | 2.807                                          | 19.616                          | 50458                         | 0.9767                 | 2.7410                                      | 49282                      | 19.158                       | 0.6694                 |
|                             | 50           | 0.0188                                      | 0.0917                                      | 2.590                                          | 18.099                          | 46813                         | 0.9759                 | 2.5270                                      | 45684                      | 17.662                       | 0.6648                 |
|                             | 45           | 0.0160                                      | 0.0777                                      | 2.309                                          | 16.136                          | 41506                         | 0.9746                 | 2.2500                                      | 40451                      | 15.726                       | 0.6408                 |
|                             | 40           | 0.0132                                      | 0.0648                                      | 2.177                                          | 15.213                          | 39132                         | 0.9740                 | 2.1200                                      | 38114                      | 14.817                       | 0.6656                 |



#### **Discussion of Results and Conclusions:**

Per Bernoulli's equation, orifice plates are used to measure flow rate. Orifice loss coefficients for different size orifices can be established as a function of the Reynolds number. As flow rate changes, the Reynolds number changes.

Graph I, Orifice Coefficient versus the Reynolds number depicts three scenarios with three different size orifice coefficients: orifice diameter of 1.03 inches (Area of 0.00578 ft<sup>2</sup>), orifice diameter of 2.055 inches (Area of 0.023 ft<sup>2</sup>), and orifice diameter of 4.1 inches (Area of 0.0916 ft<sup>2</sup>). The orifice coefficient is dependent on the orifice plate's hole diameter. Apparently the smaller the orifice hole, the greater the restriction, which leads to a smaller orifice coefficient. The range of the orifice coefficient is zero to one. If the orifice coefficient is 1.0, then there are no friction losses and the flow rate is maximum.

Based on the trend lines, results showed that the velocity, Reynolds number and Orifice Coefficient increase with increasing orifice diameter. The venturi caused resistance in the duct before the orifice. With increasing velocity of fluid, the fluid pressure will decrease to conserve the mechanical energy according to the law of conservation of energy.

Sources of error include the alignment of our orifice plates, which appeared to be somewhat of a challenge getting the clip set correctly and the manometer oscillation readings. Friction losses in the entrance and exits of our flow system and leaks are also noted.