What I took away from the lecture was a better understanding of pump selection. First off knowing which type of fluids you are dealing with. For more viscous fluids it would be best to utilize a positive displacement pump, rather than a kinetic pump that wouldn't perform well. Kinetic pumps have some aspect of control for flow rate. There are some cases where having a constant flow rate with a positive displacement pump in controlled spaces. Also for our project we should use a pump selected from sulzer's catalog. Pumps require an additional electrical component to supply power to the pump.

	NASA
B 13.27	Describe each part of this centrifugal pump designation: 11/2 ×3-6
	3 -> Suction connection size (nominal inch) 3"-> Suction connection size (nominal inch) 5"-> Cooling size of the largest impeller (inch)
B 18.34 F	or each set of operating conditions. List at least one type of pump. * Using Foure L. 500 gal/min of water at 80ft of total head. 13.51
	3,500 rpm Centritugal Parap. 500 gal/min of water at 800 ft of head. Rotary Parap.
	Rolary Pump. Bolary Pump. Bolary Pump.
	Recipiocating Pump, . 80 gal/min of water at 80017 head. Rolary Pump.
	. 8,000 gal/min of water at 200ft of head. 1,750 rpm centrifugal lump . 8,000 gal/min of water at 60ft of head.
b -	Mixed Flow Pump. . 8,000 gal/min of water at 12ft of head. Axial flow Pump.
13.55	he due to loss Discharge Criven: H2O @ 80°F, Patro = 101.8 hPa
	$\frac{h_{settem line} \rightarrow h_{out}}{D_{set} \rightarrow DN} = \frac{1.967m}{D_{set}}$ $\frac{h_{set} \rightarrow DN}{D_{set} \rightarrow DN} = \frac{1.967m}{D_{set}}$ $\frac{h_{set} \rightarrow DN}{D_{set} \rightarrow DN} = \frac{1.967m}{D_{set}}$
	The 2 hap pressure $D_{H} \rightarrow DN = 0.0575m$ 1.50 = Les $Y = 9.53 \text{ kN/m}^3$
Fact Wal	$\frac{1}{1000 \text{ Liquid with varer}} = 3.60 \times 10^{-7} \text{ m}^2/\text{s}$
	$h_{p} = \frac{P_{abm}}{\gamma} = \frac{101.8 h_{Ba}}{9.53 h_{M} h_{B}^{2}} \times \frac{(H_{M})}{1 h_{Ba}} \qquad $
	$h_{SP} = 10.60 \text{ Lm}$ $V_v = Vertical Velocity$ V = Vertical Velocity
Technolo	ngy Transfer Program

	fvr = 0.017	K=	75 Fur = 1.	275
he = fr(L) V2 + K V2 + 2	OFVT 23 +.	$F_{H}\left(\frac{L}{D}\right)_{4}$	14 2g	8
x Vertical DN 80 Scheelule 40				1
$V_{r} = \frac{\Omega}{2m(D_{r})^{2}} = \frac{D.006m^{3}/s}{2m(D_{r})^{2}} = \frac{M}{2m(D_{r})^{2}} = \frac{M}{2m(D_{r})^{2}} = 0.05$	1.049m/s	$\frac{D_v}{e} = \frac{O}{4}$	6 × 16-5 m	= 1,693.978
20 2(A.81m/s ²)		F.	~ 0.0192	
$N_{R_{v}} = N_{v} D_{v} = (1.049 \text{ m/s})(0.0779 \text{ m})$ $T = 3.60 \times 10^{-7} \text{ m}^{2}/\text{s}$ $\times \text{ Harrant DN SD Schedule UD}$ $V_{v} = 0 = 0.005 \text{ m}^{3}/\text{s} = 2.39$	= 226,991.9	ин Dн = 0	.0525m_=	- 1,147.30E
$\frac{m_{4}}{M_{4}} (D_{10})^{2} \frac{m_{4}}{M_{4}} (0.6585m)^{2} = 0.772m$ Head $V_{4}^{2} = (2.310m/s)^{2} = 0.772m$ $\frac{2g}{2g} 2(9.81m/s^{2})$		EU	1. G x 16 ³ m	2
$N_{BH} = \frac{V_{H} D_{H}}{\gamma} = \frac{(7.310 \text{ m/s})(0.0575 \text{ m})}{3.60 \times 10^{-7} \text{ m}^{2}/\text{s}} =$	336,875	fu≈	0.0201	
$\frac{1}{h_{1}} = \frac{1}{f_{v}(\frac{1}{b})_{v}} \frac{y_{1}^{2}}{z_{3}^{2}} = (0.0192)(\frac{20m}{0.077m})(0.0192)(\frac{1}{b_{1}}) = 0.0712$	(05(01m) = 0.0) Sim - Foot	J277m - Value loss	Pipe Priction	1
$h_2 = 0.2g = (1.27) A (0.017) (0.056 m) =$	- 0.01907m	- Long elbe	w	
$h_3 = 20 f_{14} \frac{2}{29} = 20(0.0201) \frac{1.5m}{0.050m} \sqrt{0}$ $h_4 = f_{14} \frac{1}{0.04} \frac{1}{29} = (0.0201) \frac{1.5m}{0.050m} \sqrt{0}$	5.772m) = 0.15	Com - Pipe	friction Z.	, P
$b p = b_1 + b_2 + b_3 + b_4 = 0.0277 m + 0.1$	0715m + 0.01	907m + 0	.156m = 0	.274 m
NPSH = hsp - hs - hp - hup 10.682 m - 2.0m - 0.274 m - 4.967	m			F
NP5H = 2. TUM				
			technolog	y.nasa.gov