MET 330 Pipeline System Design Project Continental AG Manufacturing Plant Green – Overbey – Smith

Abstract

Continental AG will be constructing a new manufacturing plant in Dayton, Ohio. This plant will include a new automated machining line which require that five separate machines be required with coolant. In addition to providing coolant to the machinery this project will show how our team plans to store, transport, and dispose of the coolant throughout the plant. Several factors were considered in our design such as location, production schedules/needs, staffing, as well as delivery and removal methods for the coolant. The intent of this project is to meet the needs of the customer while also being fiscally feasible

Drawings and Diagrams

Open Channel System

Purpose: To design an open channel system that will be able to take fluid from the tank to a far away location.

	1-10	Froude Number NF = V Vggh	Manings Equation $V = \frac{1.519}{10} R^{2/2} S_{2}^{(1/2)}$
A = WD $WP = W + 2$	»i .0	Hydraulie Depth R = A WP	Q = Av = 1/14 = AB #3 5/1/3
$AR^{2/3} = 0.012$ Desired $AR^{2/3} = 1$	(0.3713) 49 (0.001)"* 2.0946		$AR^{n} = \prod_{l, l \neq 0} A$
Cross Sectional I	here of Channel	×Based On NF ≈ 0.396 NF 4 1.0	Theralisons *
Orgens Orgens He Ic- Width - 0.8	1 0.875A	Saberitical Flow	

Table 8 - Open Channel Calculations

W(ft)	D(ft)	WP(ft)	$A(ft^2)$	R	v(ft/s)	$\int ft^3$	$AR^{2/3}$	yh	N _F
						$Q_{\max}(-)$			
1.500	0.750	3.000	1.125	0.375	2.042	2.2971	0.5850	0.750	0.415
1.250	0.625	2.500	0.781	0.313	1.808	1.4126	0.3598	0.625	0.403
1.125	0.563	2.250	0.633	0.281	1.686	1.0666	0.2716	0.563	0.396
1.000	0.500	2.000	0.500	0.250	1.558	0.7791	0.1984	0.500	0.388
1.000	0.375	1.750	0.375	0.214	1.406	0.5273	0.1343	0.375	0.405
0.875	0.375	1.625	0.328	0.202	1.351	0.4434	0.1129	0.375	0.389
0.875	0.350	1.575	0.306	0.194	1.318	0.4036	0.1028	0.350	0.393
0.875	0.340	1.555	0.298	0.191	1.304	0.3878	0.0988	0.340	0.394
0.875	0.330	1.535	0.289	0.188	1.289	0.3722	0.0948	0.330	0.395
0.875	0.330	1.534	0.288	0.188	1.288	0.3714	0.0946	0.330	0.396

Channel Calculations

B3198H - Hinged Extension Split Pipe Clamp

Size Range: 3/8" (10mm) to 3" (80mm) pipe Material: Malleable Iron

Function: Designed for suspending non-insulated pipe horizontally or vertically. Approvals: Conforms to Federal Specification WW-H-171E & A-A-1192A, Type 25 and Manufacturers Standardization Society ANSI/MSS SP-69 & SP-58, Type 12. Standard Finish: Plain or Electro-Galvanized

Order By: Part number and finish.

28-00 AV	Pipe	Size	Rod Size		С	Desig	n Load	Approx	Wt/100
Part No.	in.	(mm)	A	in.	(mm)	Lbs.	(kN)	Lbs.	(kg)
B3198H-3/a	3/8"	(10)	3/8"-16	31/32*	(24.6)	180	(.80)	9	(4.1)
B3198H-1/2	1/2*	(15)	3/8"-16	11/15"	(27.0)	180	(.80)	12	(5.4)
B3198H-3/4	3/4*	(20)	3/8"-16	17/32"	(30.9)	180	(.80)	12	(5.4)
B3198H-1	1'	(25)	3/8"-16	111/32"	(34.1)	180	(.80)	13	(5.9)
B3198H-11/4	11/4"	(32)	3/8"-16	119/32"	(39.7)	180	(.80)	18	(8.1)
B3198H-11/2	11/2"	(40)	3/8"-16	123/32"	(43.6)	180	(.80)	21	(9.5)
B3198H-2	2"	(50)	3/8"-16	Ζ	(50.8)	180	(.80)	44	(19.9)
B3198H-21/2	21/2°	(65)	1/2"-13	211/32*	(59.5)	300	(1.33)	73	(33.1)
B3198H-3	3"	(80)	1/2"-13	223/32*	(69.0)	300	(1.33)	95	(43.1)

Figure 11 - Pipe Support Information

Support on Pipelines

Support Calculations

Design Considerations: The weight of the fluid and the steel pipes must be considered. Depending on the orientation of the pipe it may experience various vertical and horizontal forces. Design with a standard of maximum pipe deflection of about 5%, In between ranges of 1% - 10%. Assume pipes are full of coolant. Will utilize a hinged extension split pipe clamp has the hanger support.

Pipeline Support	L = Represents	Pipe Length
Y (Maximum Deflection Moment of Inertia for $T = \pi (D.^{4} - D.^{4}) =$ G_{4} $T = 0.0873 m^{4}$	2) = <u>FL3</u> 48EI 24 1" Schedale 40 pipe <u>2 (1.315m⁴ - 1.049m⁴)</u> 64	$= 5 \% D_{0}$ $(= (0.05)(1.315))$ $Y = 0.0658$
Solving For Weight of ($M = P_e V = P_e (AL)$ (1.87365lug/fl2) $M = 9.121 \times 10^{-4}$	$\frac{1}{2} \frac{1}{2} \frac{1}$	W= mg (9.121×10-1/2)(927.11/2)/12= W= 0.352 L
Solving For Weight of m = PsV = Pc(AL) (0.28416/101/ - 32.2 m = 0.00436L	1" steel pipes)* = (1.315:12 - 1.049:12)	W.«mg (0.00936 L)(386.418/9") W.=1.683 L
$\Delta W = W_0 + W_0 = T$ $\mathcal{U} = \frac{FL^3}{48ET} \Longrightarrow$ $L = 44.52 \text{ in or}$	2.0351 0.0658 = <u>(2.0851)(13)</u> <u>48(2.9×10²psi)(0</u> 3.710 ft between Supports	50875in9) =)"/L"=13929297.926in"
FBD of Bran 1000 10000 10000 10000 10000 10000 10000 10000 100000 1000000000000000000000000000000000000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (4.52.10) 2.Fy = 74.97716F $E_{1} = 37.4630F$
	LIG ZFy = W	" Force acting on Support *

Figure 12 - Pipe Support Calculations

Pump Selection

Pump Curves

E 2 x 3 x 7.	2.5A -1 OHH SULZER Series 2.00 / 60Hz E002
Curve No OHH 52-1-1-03	NSS 11000 (213) Speed
Efficiency Basis API Std. clearances	NS 847 (16) 3520
Max Solid .79 in (20 mm)	Rotation CCW viewed from coupling
	flow [m3/h]
200 6.75 in 6.00 in	15 48 51 54 56 57 57 8 57 56 54 60 50 E 70 70 E 70 E 70 70 E
100 -5.25 in -4.50 in 50	
	E.

Table 30 - Pump Power

Pump #	H _A (ft)	$Q(\frac{ft^3}{s})$	Pa(Required Power)HP
Pump 1	21.34843	0.371	0.932
Pump 2	111.5343	0.0371	0.4870
Pump 3	129.1409	0.0371	0.5639
Pump 4	5.27894	0.1485	0.0923

Pump Power Requirements

Bill of Materials

ID #	Item Description	UOM	Quantity
1	Tank 1 , Fabricated 20000 Gallon Tank, D 15', H 16', 16 Guage 304 Stainless Steel	EA	1
2	Tank 2, Fabricated 1000 Gallon Tank, D 5.5', H 6.5', 16 Guage 304 Stainless Steel	EA	1
3	Tank 3, Fabricated 1000 Gallon Tank, D 10', H 11', 16 Guage 304 Stainless Steel	EA	1
4	Blind Flange McMaster Carr, 44685K164	EA	1
5	Hex Head Bolts, .5"-13, 304 Stainless Steel	EA	4
6	2.5" NPS S40 Pipe, 10' Sections	EA	3
7	2.5" NPS S40 Gate Valves	EA	2
8	2.5" NPS \$40 Couplings.	EA	2
10	2.5 NPS Unions	EA	2
10	2.5" NPS Swing Check Vlave	EA	2
12	1" NPS S40 Pine 10' Sections	FA	130
13	1" NPS S40 Gate Valves	FA	4
14	1" NPS S40 Couplings.	EA	130
15	1" NPS Unions	EA	4
16	1" NPS 90 elbows	EA	9
17	1" NPS Swing Check Vlave	EA	2
18	2" NPS S40 Pipe, 10' Sections	EA	2
19	2" NPS S40 Gate Valves	EA	2
20	2" NPS S40 Couplings.	EA	2
21	2" NPS Unions	EA	2
22	2" NPS 90 elbows	EA	2
23	2" NPS Swing Check Vlave	EA	1
24	Split Pipe Clamp, B3198H-2.5"	EA	30
25	Split Pipe Clamp, B3198H-1"	EA	650
26	Split Pipe Clamp, B3198H-2	EA	10
27	Threaded Rod 3/8"-16	FT	1000
28	Threaded Rod 1/2"-13	FT	20
29	Flat Washer, 1/2"	EA	100
30	Lock Washer, 1/2"	EA	100
31	Nuts, 1/2"	EA	100
32	Flat Washer, 3/8"	EA	1000
33	Lock Washer, 3/8"	EA	1000
34	Nuts, 3/8"	EA	1000
35	Sulzer Pump 2 x 3 x 7.5A-1 OHH 5.25" Impeller	EA	1
36	Sulzer Pump 1 x 2 x 7.5-1 OHH 6" Impeller	EA	2
37	Sulzer Pump 2 x 3 x 7.5-1 OHH 5.25" Impeller	EA	1
38	Flow Nozzel for 1" pipe D/d of 0.5 with manometer	EA	1

Reflection

One of my biggest takeaways from this project was the importance of effective teamwork. I joined their team on the latter part of the semester. They welcomed me with open arms and appreciated being able to contribute to an actual team. This project taught me how to hit the ground running. Since I wasn't there at the start of the semester, I had to play catch up to familiarize myself with the direction they were already going. Fitting in and being flexible to work towards the common goal of designing this piping system. Working on this project will benefit me in my career being able to problem solve methodically. Navigating the various technical demands and intricacies put it into a real-life perspective that I will be able to take with me forever. My knowledge of piping system increased working with two other brilliant minds that have more industry experience. As a student there is so much that you can take away than just in the classroom