
Lab #2: Set UID Attacks
Name: Neriah Alcantara

Task 1- Shell Exploration
1. The applications in the /usr/bin directory are still configured with Set-UID and root

permissions in the first four lines. and the four commands are no longer Set-UID
programs after I copied it to my directory.

2. The permissions were set to root before executing the cmd cp /bin/zsh tmp/zsh; after
copying the file to /tmp, the root permissions have been removed.

3. Completing the procedures outlined in this query. To start, I write cp /bin/zsh /tmp,
chmod 4755 /tmp/zsh, and then execute /tmp/zsh. After executing zsh and verifying my
ID and EUID, I am able to obtain root access.

4. Repeat above procedure with /bin/bash instead of /bin/zsh. Copy /bin/bash to /tmp, make
it a set-root-uid program. Run /tmp/bash as a normal user. Will you get root privilege?
Please describe and explain your observation

a. Doing the same above steps, I am unable to gain root privileges.

Task 2 – Exploiting PATH Environment Variable
include <stdio.h>
include <stdlib.h>
Int main ()
{

system(“ls”);
return 0;

}

1. Demonstrate if you can allow the above Set-UID program owned by the root to run your
code instead of /bin/ls. If you are successful, is your code running with root privileges?
Explain your observation. In order to do this task, you need to perform the following
actions:

a. Create the above program as a Set-UID program and test to see if the results
match the intent of the program.
i. Using the code supplied for this assignment, I wrote a script called

customls.c and produced the program. I then typed sudo chown root:root
[prog_name] and sudo chmod +s [prog_name] to run the command to
Set-UID a program.

b. Creating a customls program (different than the previous one)

Afterward, execute gcc customls2.c -o ls. After that, use ls -l ls to see if
the program itself doesn't have root rights before launching it with./ls.

c. Make the necessary changes to the PATH variable such that your program ls is
called when you run the above Set-UID program. Report your observations.

i. Changing the path variable by typing export PATH=$(pwd):$PATH and
then running the program using ./ls

d. Report if your code is running with root privileges or not.
i. My code for part C is not running any root privileges.

2. Now, change /bin/sh so it points back to /bin/bash, and repeat the steps. Can you still get
the root privilege? Explain your observations.

a. After changing back my /bin/sh back to /bin/bash, I am unable to do chown or
chmod to Set-UID a program. But the progam will still be able to run without root
privileges or SetUID.

Task 3 - Exploiting Set-UID program
a. I set q = 0 in the program and then generated a file named "newfile" that can only be

read, edited, and executed by root. I then built a program that was listed for task 3 and
gave root privileges (sudo chown root:root [prog_name] and sudo chmod +s
[prog_name]). The newfile cannot be viewed by an ordinary user, but it was read and
modified by the "task3" program when it is run with root access and SetUID permissions
(with the command./task3 "newfile;mv newfile newfile_new"). As a result, the program
is NOT secure and will jeopardize the system's integrity.

b.

c. After setting q = 1 in the program, and running the same command, the results show that
there is no such file or directory. The system() works since it is linked to the zsh shell
while execve() does the command without running through the shell, interpreting the
code differently.

Task 4 – LD_PRELOAD environment variable.
d. Creating the dynamic link library named “task4.c”

e. (in photo f)
f.

g. Running “myprog” as a regular program as as a normal user.

● Made myprog a Set-UID root program and ran it as a normal user. After running the
program, nothing happened. By observation, it ignored the LD_PRELOAD variable and
just used default sleep() instead of the custom one provided for this task.

● Make myprog a Set-UID root program, and run it in the root account.
○ The results show that it used the LS_PRELOAD variable and did not use the

sleep()

● Make myprog a Set-UID user1 program (i.e., the owner is user1, which is another user
account), and runs it as a different user(not-root user).

○ After running the “myprog” program, nothing happened. Therefore, it used the
default sleep() function.

Task 5 – Capability Leak
In the class, we looked at an example of capability leak. Here is another example of the

same issue. Compile the following program, and make the program a SETUID root program.
Run it in a normal user account, and describe what you have observed. Will the file /etc/zzz be
modified? Please explain your observation.

You need to submit a detailed report to describe what you have done and what you have
observed; you also need to provide explanation to the observations that are interesting or
surprising

● I created a file in the /etc directory containing the “zzz” file. And created the program
containing the code for task 5 and named it “task5” and copied it to /etc.

I then exit out of root in an attempt to run the “task5” program in the/etc directory. After I
ran the program, there was a dialogue that said “malicious data.” meaning that the file
was manipulated. This is an interesting security vulnerability that the file was opened
before the program gives up root permission.

