Homework 1.4

This week we learned about Reynolds number, energy loss, minor loss, and different types of flows. Reynolds number was developed by a guy name Osborne Reynolds, and developed an equation that helps us find energy loss. When we divide fluid inertia forces by viscous forces, we can look at a graph to find out what the energy loss is. If Re < 2100, then the flow is laminar, if Re > 4000 then the flow is turbulent. There was another person who developed a similar way to find energy loss. Darcy developed the equation: $H_L = f * \frac{L}{D} * \frac{v^2}{2g}$, which also uses an overly complicated graph that no one can read for exact values. If the flow is laminar we can use the equation, $f = \frac{64}{n_r}$ and if the flow is turbulent (and god has abandoned you) we use $f = \frac{0.25}{\left[\log\left(\frac{1}{3.7(\frac{D}{E})} + \frac{5.74}{N_R^{0.9}}\right)\right]^2}$. It is important to know these values, as it helps

design piping diagrams and understand what is going on inside them.

In open channel systems, the Reynolds number changes from Re < 2100 and Re > 4000 to Re < 500 and Re > 2000. The Reynolds equation also changes to $N_R = \frac{vR}{v}$. If friction is less than 1, it is sub critical flow, If it is equal to 1, then it is critical flow, and if it is greater than 1, it is super critical flow.

Homework Problems

7.11

(40 10 · 122 = 5760 10) 7-11) A Submusible deep vell fump delivers 745 gal/h of varter through a 1" schedue 40 ppe Shown below operating in a system $\left\{ h_{\mu} = \frac{P_{\mu} - i_{0}}{\gamma_{J_{\mu}\nu}} + (z_{2} - z_{1}) \right\}$ $h_{\alpha} = \frac{570^{10}}{62.4^{10}} + (120' - 0')$ an energy less of 10.5 16-Ft/16 occurs in Accilians system a) Calculate flower delivered by pump to the water b) If the pump draws 2 hp, calculate efficiency ha= 92.3'+ 120'= 212.3' $\begin{cases} \int_{\text{ulmax}} h_{\alpha} \cdot (Y_{\text{ulter}} \cdot Q) \\ f(745 \frac{g_{al}}{h} - 7.48 \frac{g_{al}}{g_{al}} \\ = 99.5 \frac{g_{al}}{h} = 0.002 \frac{g_{al}}{s}, \\ \int_{\text{cl}} f_{\alpha} = (212, 3') \cdot (62.4 \frac{16}{h^3} \cdot 0.027 \frac{g_{al}}{s}) \end{cases}$ -> Vent a = 366.5 Ft-b = 0.7 hP 120' FION Secure Prated 2 Cump Ret S Ĺz e pump - 366.5 F+-16 - 650 Fry = 0.7 0,=0 P2=40 Psig Q=745 gal/h Crump $Z_{1} = 0 \text{ if } Z_{2} = 120 \text{ ff } Y_{vater} = 62.4 \frac{16}{142}$ $V_{1} = 0 \quad V_{2} = 0 \quad P_{1,m1} = 1 \text{ hP} = 550 \text{ ff } \frac{16}{55}$ =) Cermp 70%

Problem 7.16	0
Arice Q= 840 W	lmin g chulle toil 55-0.85 68 = 4:2 N.ml.N. W 2 Niet Skulder 62 62 7000 = 000000
lon 1700 hat p	$\frac{1}{1 + V_{1}^{2}} + 2_{1} = \frac{1}{1 + V_{2}^{2}} + \frac{1}{2} + $
bhild an pot h,	$f = \frac{p_{1}}{\tilde{Y}} + (\tilde{z}_{2}, \tilde{z}_{1}) + h_{1}$
ha=	= 835402/1000 HMM) + 145000/04 +42001/0 (085×98101/03) 113.64 MM/N
$P_{A} = 13733.18 \text{ N.m.} = 13733.18 N.m.$	^e / ₂₄₀) x(0.85 x9810NI,w ²) 13-73 KW
Betwee point Q.D. S 147+12 + V,+ 21= 2, + V3 + 23+1/2 + 1. 7 29 7 3	$\frac{1}{10} = \frac{1}{10} + \frac{(4.5ml)^2}{10} + \frac{34ml}{10} + \frac{1}{10} $
$O = \frac{P_3}{8} + \frac{V_3}{23} + \frac{2}{3} + \frac{1}{23}$ $Q_3 = A_3 V_3$	$\frac{P_{2}}{\gamma} = -5.43 \text{ N·m/N}$ $\frac{P_{3}}{\gamma} = (0.853 \text{ BTO M/m3})(-5.43 \text{ N/m/N})$
$V_{1} = \frac{Q_{2}}{A_{3}} = \frac{\left(\frac{8 \vee Q}{6 \sigma^{2D}}\right) m^{3} / s}{\frac{1}{q} \left(6 \sigma^{2D} R\right)^{2}}$	P3 = -45278 x lm2 P3 = -453 x Pa
Vg = 45m/s	

Problem 7.22 01 19=0.90 Energy WH d) Pressure of the inles to the pump Surena pipe = 11.5 16-ft/16 50000 V3=V1=15.58,40 - 5000 discharge pipe = 35.0 White $+\frac{1}{29} + \frac{1}{29} + \frac{1}{29} + \frac{1}{29} + \frac{1}{29} + \frac{1}{10} + \frac{1}{10}$ per an 3/ in scielule 80 steel pipe Inside dument = 0423 in $0 = \frac{P_3 + V_3^2}{Y} + \frac{1}{23} + \frac{1}{23$ G a) Volume flow rate 0= R + (15.58A15)2 + 5 16 A/26 + 11.5 cbfllb => makes the piston to more 20 in in 15 second . 2×32.2 11/52 Q=VA P3 = - 3.77.16ples - 5 16ples + Histopla $= \left(\frac{20}{12} h \right) \frac{1}{15 \text{ km}} \times \frac{11}{4} \left(\frac{5}{12} h \right)^2$ = - 20-27 26 Ales Q=0.0152 ft3/s P3= (09×69.4 esp3) (-20.27 ebp. w) b) Pressure at the cylinder. P= F/A = 1100016 = 80672.5 Ub/ft2 P3 = - 1138.36 eb/ft2 The (5/2)2/2 2) Power detured by the primp hy + prover 24 = pa + y2 + to the + be c) Pressure of the owner of the pump $+\frac{1}{29}^{2} + \frac{2}{1} = \frac{1}{1} + \frac{1}{120} + \frac{1}$ Q=VA $V_1 = Q_1 = \frac{0.0152ft^{3/2}}{T_1} (0.422h)^2 = 15.58 \text{ H/s}$ ha= P2+V: +22+hi $= \frac{(806725164f^{2})}{(0.7862+164f^{2})} + \frac{(0.115616)^{2}}{2\times52\cdot264f^{2}} + 152664a + (115435)26.664a$ $\frac{P_{1}}{V} = \frac{P_{2}}{V} + \frac{(V_{2}^{2} + V_{1}^{2})}{2} + \frac{1}{2} + h_{L}$ $V_2 = Q_2 = \frac{0.0526^{3/5}}{\frac{1}{2}[S_1]^3} = 0.1115 \text{M/s}$ $\frac{P_{1}}{V} = \left(\frac{806725664h^{2}}{0.9x624}bh^{2}\right) + \frac{(0.115^{2} - 15.55^{2})h^{2}U^{2}}{2x.32\cdot264y^{2}} + \frac{10.0464b + 35.6664b}{2x.32\cdot264y^{2}}$ Varyens 47Abs ha= 1436.48 \$ + 61.5 A = 1497.98 A P. = 1436 48 16 1/10 + -3 77 16 \$ 10 14 1 1 + 35 85 \$ 100 P=hara = 1497 98 A X 0.9x62 466 103 × 0.01 52 fr3/5 = 1278.73 el.ft./s x 14e 550 el.ft/s P1 = (0.9×62.444+2) (1477.7146/198) P= 82988.2061A2 Rapischo &= 2.32hr 7.30 16.7 gal = 2.219 5 7-30) Water at 60°F Flows from a large reserver through a fluid motor at the rate of 1000 gal/min (shown below) 1000 Elgen = hr. (Ywater · Q) } If the motor removes 37 hp from the fluid, find energy losses in the Cen = 1972.2' · (62.4 # + 2.2 #3) System

-11-Pgen=273112,8 Ft-16 = 446.5 h 165 21 - 2 Ft pipe $\begin{array}{c} P_{2} = 0 & Z_{1} = 165 & Z_{2} = 0 \\ V_{2} = \frac{a}{A} & Q = 1000 \\ gal \\ min \end{array} \begin{array}{c} P_{gen} = 37 \\ P_{g$ $P_{gen} = 37hp \cdot 560 = 20,350 \frac{ft-1b}{5}$ =7 20,350 Ft-16 = 0.07 = 7° efficiency 273,112.8 5 = 0.07 = 7° efficiency \$A= TT2 A= TC · (2/3FH)2 = 0.34 Ft2 $\begin{cases} V_2 = \frac{Q}{A} \end{cases} V_2 = \frac{1000 \text{ gal/min}}{0.34 \text{ pt}^2} = 2864.8 \frac{\text{Ft}}{\text{min}} \end{cases}$ $\left\{h_{L}=\left(Z_{1}-Z_{2}\right)-\frac{V_{L}^{2}}{2g}-P_{grad}^{2}\left(2804.8\frac{f}{\pi in}/60=47.7\frac{f}{5}\right)\right\}$ $\left\{ h_{R} = (2_{2} - 2_{1}) + \frac{V_{2}^{2} - v_{1}^{2}}{2g} \right\}$ h1= (165') - (47,7 H) - 20,350 H-15 $h_{B} = (0 - 165) + (\frac{2364.3^{\frac{2}{5}} - 0^{2}}{2 \cdot 10^{\frac{11}{5}}})$ h1 = 164,3 - 20,350 FT-15 $h_p = -165 + 2137.3 = 1972.2$ 3) h1=-20,185 ft-15 = -36.7 hp

	Kroblem 7.35		
	ain servo punto 22/11 20 40	· 0 = 12 10	9
	Rite All March	Q=1750	us limin
	4/2 10	B 28.	460
	P-1 D 2A	P = 20	
	1 Of the	-m = 00/	2
		h_1-2=2	8 UALUS
		h	28.5 16-1/15
		hiere	3.5 26-12/13
	Power remark by the press.		
	0.0	0	12 C
		1 PM = TA	PA= enB:
	$h_A + \frac{F_1}{F_1} + \frac{V_1}{V_1} + 2_1 = \frac{F_6 + V_6}{F_6} + \frac{26 + h_R + h_L}{F_6}$	1 13	=08x 28-94p
	Y 29 / 29	(h= 22.72 hp
	$h_{A} = V_{6}^{2} + 26 + h_{R} + h_{L}$	=> PA=hA	ra
	25	Ĩ.	Y=09×62-468143
~	has he -ve -th-he	ha= Ph	Y= 5616 1Alks
	B B	10	Charles a stability
	Constant and		Gentigelaist 1171
	= > 70. 53 (plus - (1 +2011) - 1 with - 34 8 chiles	1	Q=0.20.11
	2x32-2/21*	215	514 per 10 - 54 per 15
	ha = 532.6 Ubplus	hA=	22.7240x 550 HIX
		1 .	56 16 16 16 16 XO 39 103 1x
	Pa=hara	ha	= 570.53 LL. F/LL
	= 532.666 Alph × 56 (686 648 × 0.39 48/5	=> h_= h_1.	+ his + his
	= 11 665.21824 bls x 160	-(2.8	+28-5+25)11-6/16
	SSUAL		+ 8 11 h 11
	= 212110	4L = 3	(d de ja los
	- 202 Np	DQ=VA V	= Q = 0.39691
		1	I (0-20584)2
	$P_{i} = 21.21 \text{ hp}$		- 11 72 614
		1 ¥	6=11.72413
0		•	
		1	
		1	
		1	

2 19 Flow $P_{1} = 0 \quad P_{2} = 30 \frac{h}{h^{2}} = 4320 \frac{h}{h^{2}} \quad V_{1} = 0 \quad V_{2}$ $Z_{1} = 0 \quad Z_{2} = 220 \quad Q = 40 \frac{g_{01}}{m_{11}} = \frac{2}{3} \frac{g_{e1}}{5} = h_{1} = 15.5 \frac{h-44}{15} \quad V_{uniter} = 62.4 \frac{15}{4^{3}} \quad h_{R} = 0$ 0 $\begin{cases} h_{A} - h_{L} = \frac{P_{2}}{Y_{water}} + Z_{2} \end{cases}$ $= 7h_{A} = \frac{4320}{62.4} + 220' + 15.5 + 5 = 304.7 = 75$ 304.7 = (0.554 H 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Problem 8.33
	Water at 80°F Y= 62.2 26/ft3
	Desired Q= 2.50A3/S
	h h h = ?
	. Schalaula (10
	त्राच्य
	550 AC.
	$h_1 = f_X + xy^2$ $y = Q = 2.5 H^3 L_2$
	T D Zg A TY (0 SDAWA)
	V= 12.46A12
	E= 1.5×10"4
	N=DSOSYAE Ne=VD=12-46AlixOSUSYAE
	V=9-5×10 H2/3 9.5×156 AVS USing Mondal's chaptern
m	= 6.6 xi8
	Referrie Royanell = D= 0505492 f= 0.0165
	E FSNOUL
	= 33 <b>6</b> 9.
	h = 00165× 550/ × (12.46/4)
	0.505th 2×32.2 Als2
	hL= 43.29 ft-
	···· 0 6° 1 0 6° 0°
	$h_A + p_1^2 + V_1^2 + 2_1 = p_1 + V_2^2 + 2_2 + h_R + h_L$
	83883
	$Z_1 = \underline{V}^2 + Rethe$
	25
	21= (12:46/41) + 43:29 A.
	2×32·26(12
0	
	+1= 45. tft
	N=Z1= 45.7A
	1.4
	*

8-38) The Figure below Shors a System for delivering liquid lawn fertilizer. He Nozzle on the end of the base requires Hokfa of pressne, Internal diameter of the hose is 25 km, The fertilizer has a special gravity of 1.1 and a channel vis coscily of 2.0 · 10-3 fa.5. 193532.4/60 = 3225.53 140 . If the length of the hose is 85m find a) your deliveral by fimp to the solution b) gressine at the outlet of the fimp Maria a) orra na 10780 kg 10 9  $\frac{N_{0221e}}{P = 140 \, \text{kPa}}$ -Hose 1,2m-1,5m 10 10= 25mm = 0.025m L= 85m A= 4.8e4mi kg-m 1 73 ha= Fertilizer  $\begin{array}{c} T_{1} p \\ P_{1} = 0 \\ V_{1} = 0 \\ V_{1} = 0 \\ V_{2} = \frac{9}{2} = 140 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 193532.4 \ \text{min} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = 0 \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = 100 \ \text{kPa} \\ P_{1} = \frac{9}{2} = 100 \ \text{kPa} \\ P_{2} = 100 \ \text{kPa} \\ P_{1} = 100 \ \text{kPa} \\ P_{2} = 100 \ \text{kPa} \\ P_{1} = 100 \ \text{kPa} \\ P_{2} = 100 \ \text{kPa} \\ P_{1} = 100 \ \text{kPa} \\ P_{1} = 100 \ \text{kPa} \\ P_{1} = 100 \ \text{kPa} \\ P_{2} = 100 \ \text{kPa} \\ P_{1} = 100$  $\begin{array}{l} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ 6) Z1=1.5m Z2= 10m P2 40 1 1. S. A. hea Ξ 2 Q= 95L/min P3= 23=1.5m 2 1

1	•
	Robberg 8-444
	Part of Part of a second
	Y Premie ME D = 35 Oprig
	@ 1 AB meture of h =
	Q = 0.5 1=15
	ente 1 st. 40 Djarmie russing pol = 4.0 x10 cb. slft2
	60" Aus Junpa Sg = 1.026 Y= 1026× 62.400 (A3 = 64.0246)(43
	Gongute has conditioned by in the discharge line
	$\partial f = -\frac{1}{2}$ $h = F \times L \times V^2$ $V = 0 = 0.563/3$
	$3kmarrow$ D 2g A $\overline{\pi}(0,\pi SPR)^2$
	sheel the F
	E= 1 3X10 1 E
	J=020383E V=15.037E15
	V 15 - PONSueve BAR 40x10 16 s/ft
	Var 03644 000 obstle Artage horas Ma = VD = 15 03/1/1 x0.2051/2
~	$J = 4.0 \pi s^{2} b s/h^{2}$ $6.25 \times 10^{-7}$
	1 026x 62.444 = 6.25x107 Ms Ne= 4.95 × 106 (Unymally dupe
	(=0:017
	Relative Card of D. 0.20550
	E
	i sho p
	NL=0.017 × 80/2 × (15.03/4)
	0.20587 2×32 2/132
	h_ = 23.18 ft.
	1 100 2603 00 0 23,184
	$h_0 + P_1 + V_1^2 + 2_1 = P_1 + V_2^2 + 2_2 + h_0 + h_1$
	x 3 x 3
	Q = V + V = (Q = C + C + C + C + C + C + C + C + C + C
	$h = (R - P_1) + (2 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) + (4 - 2) $
	1 A - 02 - 102 - 0 - 10 - 10 - 10 - 10 - 10
	Frank method and a share
14	= (25+3-5)664x == + (80A-0A) + (15-03+9732) + 23-18A
	64.02161f3 2x3224122
	Toroche
	hy = 64-104 + 804 + 2044 + 23.184 = 169.324 P= 9.8541
	D-los XD - 119.72 h X41 and life a sale = Suig 12 dhalor 14
	ha - who ch - who have not many the shift - shift which

 $\frac{1}{2} + \frac{1}{2} + \frac{1}$ 8.46  $\begin{array}{c} \left| A = \frac{T_{4}}{4} \left( \frac{T}{n} \right)^{2} = 0.35 \quad v = \frac{1}{0.35} = 1 \right| .43 \quad f \frac{1}{4} \left( \frac{1}{n} \right)^{2} = 0.35 \quad v = \frac{1}{0.35} = 1 \right| .43 \quad f \frac{1}{4} \left( \frac{1}{3} \right)^{2} \\ \text{Lefer @ 60 \quad V = 1 \ 21 \ -10^{-5} \quad H/5 \quad I_{K} = \frac{(11, 11)}{(21 - 10^{-5})} = 629752 \cdot 066 \\ \frac{F}{2} = \frac{1.5 \cdot 10^{-7}}{3} = 0.000255 \quad f = 0.0155 \\ \hline h_{L} = 0.0155 \cdot \frac{2500}{(0.66)} \cdot \left( \frac{(11, 14)}{2(10.2)} \right) = 1 \left| \frac{1}{3} \right| \left| \frac{1}{14} \right| \\ f_{A} = 62, \ 4 \quad (210 + 119.11) \cdot \frac{1}{144} = 142.61 \quad Ps1a \end{array}$ 

1 2-1 A	Ner.
8.49	THE Q: 300 gallmin = 0.67 At/s
	01 010 104'1 = 2,15 10" Lyn = 25F1
	1 PION 15T Y= 0.85. 62.4 = 55.536 2 = 75 FT
	$f = f + 2_n + f_p - h_L + h_A = f + 2_{H} + \frac{v_H}{v_{H}}$
114	$T$ $h_{a^{2}}(2b-2A) + \frac{v_{1}^{2}}{2a} + h_{2}$
	3th 41r # (1) = 0.049 F+2 V10 = 0.67 = 13.67 Ft
	T (1) = 0.087 V= 0.07 = 7.70 +1/s
11111	N = (13.67)(0.35) = 1589,53 (59,53 = 0.0403
	Rip 2.15 10
	$N_{R_{10}} = \frac{(7.70)(8.33)}{2.15 \cdot 10^{-3}} =   8 , 86 - \frac{64}{1121.86} = 0.0542.$
	$(-)(2)(n/2)^2$
	$h_{340} = \frac{(0.0403)(15)(17.07)}{(0.05)(1-17.2)} = 35.08 \text{ fr}$
	$(a, c(y))(z)(7, 2a)^2$
	$h_{4in} = \frac{(3,3in)(2,32,2)}{(2,32,2)} = 3.12$ P+
	h = 35.08+3.12 = 38.20 ft
	$h_{0} = 38, 20 + \frac{B_{0}27^{2}}{2(000)} = 4 _{0} _{1}$ ft
	P= 55.536 . 0.67 . 41.1 . 50 = 2.78 hp

	Commute the proport for:
	they fuel oil at 7795 yours in a 6-in schedure 40 steel pipe
	D= 0.5054A
	V=12615
	E=1. SXIOTA
	$\gamma = 1.27 \times 10^{-3} h^2 / s$
	$M_R = \frac{V_D}{v} = \frac{12  \beta (1 \times 0.5  \text{asyg}}{1.27  \text{x}  \text{b}^3  \beta^3 / \text{s}}$
	= <u>4.0x10</u>
	Pictame 10 glues D= 05054 ft 2 pseus /ft
_	= 3367
	Using Moody's diggin,
	f= 0.04

10.20	subben contraction from a DN 123 schedule so steep APE
	TO A DNSO SCREDULC BE PIPE FOR a Prov Pote of soo Ulrin
LIRIC	$h_{1} = k \left(\frac{k_{1}}{k_{0}}\right)$
	T TO2 ON 125 5,80 00 = 141.3 - 10-122.3
0,	Woll = 9.53 cm F. = 1.173 · 102 2
	DN 50 5 50 00=60,3 m 10= 49,5 m
	Wall= 5,54 cm Fa= 1.905 .10' m2
	D.= 122,3 no D2=49.3 no A= 1.905 103 Q= 500 /- 10
	1223/493=2,48 500 1,0000 = 4,37 NS
	(4.3) 0.973 0 K=0.39 h,=(0.39/(0.973) ~ 0,379 ~
	(1.1.1) (1.1.1) (1.1.1)

	10.37) into 5	
-	out < 5 K close return bund	
	1	
	AP & Q= 12.5 jel/min of ethylene glycel @ 17"F	
	y = 68.49 14/03	
	S + 2/ + 1/ - h - h = - h = + - + - + - + + - + + - + + - + + - + + - + + - + + - + + - + + + + + + + + + + + + + + + + + + + +	
-	Si-E = hp+hi > Pi-Pz = Y(hp+hi)	
	$k_{\ell} = \frac{\kappa(v^{2}/v)}{2} \qquad D = 0.0518 \text{ FH}$	
_	$h_{p} = \mathcal{F}\left(\frac{L}{p}\right)\left(\frac{y^{2}}{2g}\right)$	10.37) cont
	Q=12.5 gol (0.1337 A) ( 1 mm) = 0.0279 (13/2 = Q	Mody Distrany: F=0.04
	$A = A_{J} \rightarrow V = \underbrace{A} \rightarrow V = \underbrace{0.0279(a^{3}/s)}_{A} \underbrace{13.22}_{A} \underbrace{4/s}_{A} = V$	$F = F \times \frac{1}{2} \times \frac{y^2}{2}$
	K= 501 - 50= 40	N5-3-D 28
	$\begin{array}{c} k = l_{+} \left( l_{e} \right) \\ O \end{array} = 1.7 \times 10^{-4} \text{ H} \qquad e = 0.0015^{-2} 335.33 \\ \hline \end{array}$	he = 6.04 × 8/1 × 13.22 17/5 0.0518 2×32.2 = 16.76 Pt
	Meats Dagreen: 0.026 = f	$P_1 - P_2 = \gamma \left(h_1 + h_F\right)$
	K= f. (le) = 0.026 × 50 = 1.3 = K	= 48.47 (3.53 + 16.76 ft) = 13.89.26 14/42
•	$h_{l} = K \left( \frac{\mu_{s}}{2\kappa} \right) = 1.3 \left( \frac{(13.22)^{2}}{7(51.2)} \right) = 3.53 \text{ Fr}$	= 9.05 ps
	Bertolds Norfer: N= 20 v= 0.000159 H/S 0.000159	
	Ne = 4506.9	

10.39	A = 0.40 Fhils water @sor
	H 310 540 00= 3,5 in 10=3,068 in
	310 \$40 Wall = 0.21620 FA = 0.05132 Ft
	V= 0.40 = 7,79 +t/s f=0.017 Lelo= 20
	L=(0.017)(20) (279) = 0.32 Pt

0.43)	
MICT	Copper
	TSOMA TEA LL DECIDUL CICICI @ 25°C
	C ISOMA I ISO WIN PROPERTIES
	V I I I I I I I I I I I I I I I I I I I
	Loutet
~ - 750 Have -	1 m3/c
ia ia / Min =	$\frac{1}{60000} \times 750 = 0.0125 \text{ m}^2/s$
d=D-21	-> d= 50 - 2/2) = 46 mm = 0.046 m
A= ted2	$\pi (0.046)^2$ , 2
4	4 0.00/66 m
V= 02 =	0.0125 m3/5 - 7.53 m/s
Ą	0.00144
5 = 750 =	$R_{e} = \frac{\sqrt{D}}{\sqrt{2}} = \frac{753(46)}{100}$
46	2.31×10-10
Le - 42	E = 1.5×10 6 M = 144928.9
Б	
2-= 5	1.5×10 = 30/066.7
F 0.09	
F= 0.01	
3-0-016	Cooluge Mark
K- fr (0	) = 0.01(14) 0.00
$h_1 = V \frac{V^2}{V}$	- 11 (7,53 -15) = 1.092 m + h1
L 21	$= 0.510 \left( \frac{1}{2} \left( \frac{1}{2} \right) \right)$
~	
11. 112)	L
10.12)	cent
<u> </u>	
6. 2	10 3.26.
78	47
w.	16
6. 5	13
ħ	
2	
	10 P
h, =	f+ To 22 = 6.09(12)/7.53 = 0.45 m
L'an	
D cu	1 2(981)
0.04	
h	$= 0.016 \left( \frac{1.2 \text{ h}}{2(981)} \right) \left( \frac{7.53^{\circ}}{2(981)} \right) = 1.2 \text{ m}$
httuse	$= 0.016 \left( \frac{1.2 \text{ m}}{0.046} \right) \left( \frac{7.53^{\circ}}{2(9.81)} \right) = 1.2 \text{ m}$
hL tube	$= 0.016 \left( \frac{1.2 \text{ m}}{0.046} \right) \left( \frac{7.53}{2(981)} \right) = 1.2 \text{ m}$ = 1.2 + 0.45 = 1.65  m
httose	$= 0.016 \left( \frac{1.2 \text{ h}}{0.046} \right) \left( \frac{7.53}{2(981)} \right) = 1.2 \text{ m}$ $= 1.2 + 0.45 = \left[ 1.65 \text{ m} \right]$

10.46) 09	Water @ 50°C
E-100 mm 00	$(1.0 \times 10^{-3} \text{ m}^2/\text{s})$
devis 3.5 mm cell	d a
A Street hydrodic +	Pipe 2
	$d_{1} = D_{1} - 2f_{1}$
T,	= 50 - 2(2) = 46 = 0.046 m
	A = = = 0,2 = 0.00160 m2
1200 miles	Pipe 2
15/1	dz = Dz - 2tz
	= 100-2(3.5)= 93=0.093m
1 1 Lin hul -	A2====================================
- 1250 350 MM	0.006
50 m 02 1 1 00 1 1	V1= A = 0.00166 = 3.61 MIS
2.0 mm wall of the	V = 0 = 0.000
steel hydralic mercury	2 Az 0.00671 = 0.88 mls
	2
$P_{1} + 2 + \frac{V_{1}^{2}}{2} - h_{1} - \frac{P_{1}}{2} + \frac{V_{1}}{2} + \frac{V_{1}}{2}$	a + he
7 28 2	28
PP. V.*-V.*	
h = 112 + (21 - 22) = 28	
015 11 3	× (-25) × × (235) - × /10)-0
g=1.61 KW/m numerer: F, +	1w(0.25) 1m(0.15) - 1w(1.1-12
21-22-1.LM PI-F	2- (m (0.5) m (1.0 CI)
Yu Yu	= (m(0.5) + 1w(0.05)
(1-12 = 132 × (0.35), 9.69(0.85)	700 100
Nu 449 967	
4.8 + 0.85 = 5.65 m	
$h = 5.65 - 1.2 + (3.6)^2 - 0.3$	88") = [5.15 m]
12 2(9.8	
KL=K(Y)	
5.15 = k (3.61) k= 5.1	- F7.76/
5.15 = 0.664 K	~ 1 <u>_ 1</u>

10.48	energy 2055 in go beno in steel Tube 1/4 00, wall = 0.083 m
	rear bero Radius: 3,25 in Q=27.5 Ballrin hydraulic oil
	r= 3.25 + (1.25)/2 = 3,875 in 3,875/1,120) = 3,46
	V= (27.5 .0.1337) /6.842.103 = 8.96 F+/5 E 1.5.104 Ft
	$\left(\frac{1}{120}\right)\left(1.5\cdot10^{-4}\right) = 622.22$ $k = (0,022)(13) = 0.286$
0	0.286 (8.96) = 0.357 Ft