Homework 3.3

This was the final week of the course; however, we still discussed a very important topic. The primary topic was how to select pumps and how to read graphs and charts to find the correct pump for a system. Pumps are usually thrown onto a graph with a great deal of overlap as pumps can cover certain ranges of speed and flow rate. Companies sometimes have these graphs in pamphlets to help sell their pumps or as a user's manual. The homework problems focused on chapter 13 and finding the Net Positive Suction Head or NPSH.

Homework Problems

Robber 13.17 For a given Conviewed pump, if the speed of rotation of the impoller is out a heaf, how doed the bird appointing charge?	Problem 13:22
1 2	Describe each part of this continued pump days: 1/2/3-6
$\frac{N_{a_1}}{N_{a_2}} = \left(\frac{N_1}{N_a}\right)^2 \qquad \text{if } N_0 = \frac{1}{2}N_1$	-> 1/2-in discharge connection
10070 Nt. 116	> 3-in Suchan Connection
$\frac{h_{\alpha_1}}{h_{\alpha_2}} = \left(\frac{N_1}{\sqrt{2}N_1}\right)^2 = 4$	-> A caling that can accomplate an impeller with a chamona of Gin or Smaller.
ha, = 4 => ha,= 4ha.	Problem 13.23
$ha_{1} = 4 \implies ha_{1} = 4ha_{2}$ $ha_{2} = ha_{1}$ $ha_{3} = ha_{2}$	Suitable pump ine for deliving 100 galloning water at a total head of 300 fe
> If the speed of romanian of the impeller is cut in hof, the paul	*
Capability reduced by a factor of 4.	Rup size: 1/2×3-10
Problem 13:19	
For a given size of cernifyed purp caling, if he dimens of he impellar is reduced by 25%, how much down he capturing charge?	Roblem 13.25
reduced by 25%, how much close he capturity change?	Tor a 2x3-10 pump, delente the performance that can be
	expected from a pump win an 8-in impeller operation against
$\frac{Q_1}{Q_2} = \frac{D_1}{D_2} \text{if} D_2 = 0.25D,$	a typen head of 200 ft.
Q2 D2	33.5
0	Capacity - 235 gallmin
$\frac{G_1}{G_2} = \underbrace{M_1}_{0.25M_1} \Rightarrow \underbrace{Q_1}_{1} = \underbrace{1}_{0.25} \Rightarrow 0.25G_1 = \underbrace{Q_2}_{2}$	Power required - 22.5 hp
$Q_2 = 0.35Q_1$ $Q_2 = 0.35Q_1$	Fower required - 260.5 hp
·· 42 - 0.9241	Efficieny - 53%
~	Minery - 50 /0
=> If the chameror of the impeller is rollined by 25%, the cogning reduces by 35%.	Required NRHy-11 ft.
Spaces reduced by 25%.	Leftures Walt 11 te

Problem 13.34

For each of the following sett of operating conditions, lost the opporprise type of pumps

a) 500 gallmin of weather at 80 ft of total head.

Consingul pumps - 35 coorpor.

500 gallmin of weather at 800 ft of head.

Reciprocasing pump

f) 8000 gallmin of weather at 200 ft of head.

- nixed flow pump

		4/
55	10 NPSH T=802 P=191.8 LEPA	
.5-	water rall 2r below purt	
	DIED CIUD DDD - STEEL	
	n = 11 10 PIRC IS M	
	R=30 1/min 8-953 V=3.60.107	
	101,8.6 - 10.682 m	
DNE	V= 300 LTMAR. 1018 6000 V/MAR = 1.048 M/S (4.768 109) 6000 V/MAR = 1.048 M/S F= 9.019	
	Nx= (101) (10)	THE STATE OF
	\$ = 0.0774 = 1693,418 1.0+2 = 0.0559	
	£ 16/10/2 2 (6/3) (12 2(9,8))	0
DNE	V= 200 1/0- 1 2.306 m/s NA (2.20) (9.0525) = 33621 1.667 f. 0.025	
	NA (2.20) (2.00) = 33001 (100)	
	(2.0 19) (0.059) + (75-0.018 · 1095) + (20.0.018	1(5.81)
(+ 0.025 (000 2 2 306 m	1
-	+ 0.023 (0095 70.421) = 0,010	111111
	NPSH= 10,682-2-9,3166-4,967 = 3,3984 m	
	NASH - 10'805 5 2 2'0'89 - 1191	
0	C4 B	
	Propose 45°C 39=0.49 1.8+m below purt	
	La suction = 0.92 para 98.4 LEA NPSHA= 1.50,	
	1 = 0,47 . 9.81 - 4.7088 hve=3900	
	P2 [47088 (1,5+1,84+0,92+340)]-98,4	
	= 1522,65 15 HN/m2	

Design problem #3 Trey ward

Design a System to pump varor at 80 f from a criver to a tank elevates 55 fr above the Surface of the river. Minimum flow rate is 1600 gal/min. The tank is to be Set back

Centrifoal 55++

Centrifoal 55++

Centrifoal 55++ $7 + 29 + 21 - h_1 = 92 + 22 - h_{app}$ But points 2 = 1 are oun to atmosphere vith no velocity of rote. => $92 + 12 - h_{app}$ $21 - 12 - 12 - h_{app}$ Themp $-h_1 = -12 - h_{app}$ $-12 - 12 - h_{app}$ $-12 - h_{app}$ -12

Water 680 F Q=1500 min = 25 set = 3.34 Free = 55+125=180 Ft)=1,710 Y= 62.2 16/F+3 Assuming V= 10 AHS} Calculating for Cross Section of Pipe & Jamoter [Q=V.A] & V= 10 fts, Q= 3.34 Ft3 =) A= 3,34 ft / 10 ft = 0.334 ft2 => A = 48.1 in2 SA=T. r2? =) {r=/=} => r= 3.91 => D= 7.83 · Round up for Efficiency losses =) D= 8in · USE MS 8 schedule 40 steel pipe =) E=1.5·10-4 Reynolds # Calabations {Ne= v.0.7} = 100 0.6667 ft 62.2 ft 1.27.10-5 16-5/ft2 =NA=23428666.67 = 2.3·10 D 0.667# = f = 0.015

Calculating energy bosts in 180 ft of 188 state 40

Steel pipe, When value at 80° f 5 flowing through it at 10° ft/s $\begin{cases}
h_L = f \cdot \frac{L}{D} \cdot \frac{\sqrt{2}}{2g}
\end{cases} = 0.015$ $\begin{cases}
h_L = f \cdot \frac{L}{D} \cdot \frac{\sqrt{2}}{2g}
\end{cases} = 180 \text{ ft} \quad D = 0.6667 \text{ ft} \\
v = 10 \text{ ft/s} \quad g = 32.2 \text{ ft/s}^2
\end{cases}$ $=) \frac{180}{0.6667} = 270 \quad V^2 = |00\frac{ft^2}{2} \cdot 2g = 64.4 \quad ft/s^2$ $=) 0.015 \cdot 270 \cdot \frac{100}{64.4} \cdot \frac{ft}{32}$ $\begin{cases}
h_{pump} = 6.3 \text{ ft} \quad h_{pump} \text{ head for given} \\
h_{pump} = 55 \text{ ft} + h_{pump} \quad h_$