
#Robert Timmons // Pycharm Testing
#Done with research online and through ChatGPT
from tqdm import tqdm
from scapy.layers.l2 import ARP, Ether, srp
import ipaddress
Camera OUIS categorized by manufacturer
camera_ouis = {
 "Axis": [
 "00:40:8c", # AXIS Communications
 "ac:cc:8e", # AXIS Communications
 "e8:27:25", # AXIS Communications
 "b8:a4:4f", # AXIS Communications
],
 "Vivotek": [
 "00:02:d1", # Vivotek
],
 "Hanwha": [
 "e4:30:22", # Hanwha WISENET
 "00:09:18", # Hanwha WISENET
],
 "I-Pro TIGER": [
 "d4:2d:c5", # I-Pro TIGER
],
 "Pelco": [
 "00:04:7d", # Pelco
],
 "Bosch": [
 "00:07:5f", # Bosch
],
 "Avigilon": [
 "00:1f:92", # Avigilon
 "00:18:85", # Avigilon
],
 "IC Realtime": [
 "00:26:e6", # IC Realtime
 "00:02:d1", # IC Realtime (duplicate entry in the original
list)
]
}

This should check the camera based on the OUI and
categorize it
def mac_check(mac):
 mac_normalized = mac.lower()
 for manufacturer, ouis in camera_ouis.items():
 for camera_oui in ouis:
 if mac_normalized.startswith(camera_oui):
 return manufacturer
 return None

This should scan for the mac address and categorize the
result
def scan_network(target_ip):
 arp_request = ARP(pdst=target_ip)
 broadcast = Ether(dst="ff:ff:ff:ff:ff:ff")
 arp_request_broadcast = broadcast / arp_request
 try:
 answered_list = srp(arp_request_broadcast, timeout=1,
verbose=False)[0] # Reduced timeout to speed things up
 except Exception as e:
 print(f"Error scanning {target_ip}: {e}")
 return []
 devices = []
 for element in answered_list:
 mac = element[1].hwsrc # Grabs mac address from
response
 manufacturer = mac_check(mac) # Find out which
manufacturer the MAC belongs to
 if manufacturer:
 devices.append((element[1].psrc, mac, manufacturer))
Store IP, MAC, and Manufacturer
 return devices

The network range it should scan
network_ranges = [
 "192.168.202.1/24",
 "192.168.203.1/24",
 "192.168.204.1/24",

 "192.168.205.1/24"
]
camera_ips_and_macs = {
 "Axis": [],
 "Vivotek": [],
 "Hanwha": [],
 "I-Pro TIGER": [],
 "Pelco": [],
 "Bosch": [],
 "Avigilon": [],
 "IC Realtime": []
}
Scan each network range
for network in network_ranges:
 print(f"Scanning network range: {network}") # Debugging
message to track progress
 ip_range = ipaddress.IPv4Network(network, strict=False)
 # Iterate through each IP in the current network range
 for ip in tqdm(ip_range.hosts(), desc=f"Scanning
{network}", unit="IP"):
 devices = scan_network(str(ip))
 for device_ip, device_mac, manufacturer in devices:
 if manufacturer:

camera_ips_and_macs[manufacturer].append((device_ip,
device_mac))
Write found IPs to respective files
for manufacturer, devices in camera_ips_and_macs.items():
 if devices:
 with open(f"{manufacturer}Cameraips.txt", "w") as file:
 file.write("IP ADDR\t\t\tMAC ADDR\n")
 for ip, mac in devices:
 file.write(f"{ip}\t{mac}\n")
 print(f"{manufacturer} cameras found and saved to
{manufacturer}Cameraips.txt")
 else:
 print(f"No {manufacturer} cameras found...")

