Arrays; Introduction to Exception
Handling

Chapter 8 of Visual C# How to Program, 6/e

OBJECTIVES
In this chapter you'll:

m Use arrays to store data in and retrieve data from lists and tables of values.
m Declare arrays, initialize arrays and refer to individual elements of arrays.
m Iterate through arrays with the foreach statement.

m Use var to declare implicitly typed local variables and let the compiler infer their types from their
initializer values.

m Use exception handling to process runtime problems.

m Declare C# 6 getter-only auto-implemented properties.

m Initialize auto-implemented properties with C# 6 auto-property initializers.

m Pass arrays to methods.

m Declare and manipulate multidimensional arrays—both rectangular and jagged.
m Write methods that use variable-length argument lists.

m Read command-line arguments into an app.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.1 Introduction
8.2 Arrays
8.3 Declaring and Creating Arrays

8.4 Examples Using Arrays

84.1 Creating and Initializing an Array

84.2 Using an Array Initializer

843 Calculating a Value to Store in Each Array Element

844 Summing the Elements of an Array

84.5 Iterating Through Arrays with foreach

84.6 Using Bar Charts to Display Array Data Graphically; Introducing Type Inference with var
84.7 Using the Elements of an Array as Counters

8.5 Using Arrays to Analyze Survey Results; Intro to Exception Handling

85.1 Summarizing the Results

85.2 Exception Handling: Processing the Incorrect Response
853 The try Statment

854 Executing the catch Block

85.5 Message Property of the Exception Parameter

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.6 Case Study: Card Shuffling and Dealing Simulation

86.1 Class Card and Getter-Only Auto-Implemented Properties
8.6.2 Class DeckOfCards
8.6.3 Shuffling and Dealing Cards

8.7 Passing Arrays and Array Elements to Methods
8.8 Case Study: GradeBook Using an Array to Store Grades

8.9 Multidimensional Arrays

89.1 Rectangular Arrays
89.2 Jagged Arrays
89.3 Two-Dimensional Array Example: Displaying Element Values

8.10 Case Study: GradeBook Using a Rectangular Array
8.11 Variable-Length Argument Lists

8.12 Using Command-Line Arguments

8.13 (Optional) Passing Arrays by Value and by Reference
8.14 Wrap-Up

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.1 Introduction

» Data structures are collections of related data items.

» Arrays are data structures consisting of related data items
of the same type.

» Arrays are fixed-length entities—they remain the same
length once they’re created.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.2 Arrays

» An array is a group of variables—called elements—
containing values that all have the same type.

» Arrays are reference types—what we typically think of as an
array is actually a reference to an array object.

» The elements of an array can be either value types or
reference types.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.2 Arrays (cont.)

» To refer to a particular element in an array, we specify the
name of the reference to the array the element’s position in
the array, which is called the element’s index.

» Figure 8.1 shows a logical representation of an integer array
called ¢ containing sample values.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Name of array (c) > cl0] =45

c[1] 6
c[2] 0
c[3] 72
c[4] 1543
c[5] -89
c[6] 0
c[7] 62
c[8] -3
cl[9] 1
c[10] 6453

Index (or subcript) of the
element in array ¢ c[11] 78

| }

Fig. 8.1 | A I2-element array.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.2 Arrays (Cont.)

» Elements are accessed with an array-access expression
that includes the name of the array, followed by the index of
the particular element in square brackets ([]).

» The first element in every array has index zero and is
sometimes called the zeroth element

» An index must be a nonnegative integer and can be an
expression.

» Every array’s length is stored in its Length property.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.3 Declaring and Creating Arrays

» Since arrays are objects, they're typically created with
keyword new.

» To create an array object, specify the type and the number
of array elements as part of an array-creation expression
that uses keyword new.

» The following declaration and array-creation expression
create an array object containing 12 int elements and store
the array’s reference in variable c:

int[] ¢ = new int[12];

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.3 Declaring and Creating Arrays (Cont.)

» Creating the array also can be performed as follows:

int[] c; // declare the array variable
c = new int[12]; // create the array; assign to array variable

» The square brackets following int indicate that c
will refer to an array of ints.

» The array variable c receives the reference to a new
array object of 12 int elements.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.3 Declaring and Creating Arrays (Cont.)

» The number of elements can also be specified as an
expression that's calculated at execution time.

» When an array is created, each element of the array
receives a default value:
= @ for the numeric simple-type elements.
= false for bool elements.
" null for references.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 8.

In an array variable declaration, specifying the number
of elements in the square brackets (e.g., Tnt[12] c;)is
a syntax error.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.3 Declaring and Creating Arrays (Cont.)

Resizing an Array

» Though arrays are fixed-length entities, you can use the
static Array method Resize which takes two
arguments—the array to be resized and the new length—
to create a new array with the specified length.
= Copies the contents of the old array into the new array
= Sets the array variable to reference the new array.

» Any content that cannot fit into the new array is truncated
without warning.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.4 Examples Using Arrays

8.4.1 Creating and Initializing an Array

» The app in Fig. 8.2 uses keyword new to create an array of
five int elements.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.2: InitArray.cs

2 // Creating an array.

3 using System;

4

5 <class InitArray

6 {

7 static void Main()

8 {

9 // create the space for array and initialize to default zeros
10 int[] array = new int[5]; // array contains 5 int elements
|

12 Console.WriteLine($"{"Index"}{"Value",8}"); // headings
13

14 // output each array element's value

15 for (int counter = 0; counter < array.Length; ++counter)
16 {

17 Console.WriteLine($"{counter,5}{array[counter],8}");

18 }

19 }

20 }

Fig. 8.2 | Creating an array. (Part | of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Index Value

A WNRERO
OO OOO0O

Fig. 8.2 | Creating an array. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.4 Examples Using Arrays (cont.)

8.4.2 Using an Array Initializer

» An app can create an array and initialize its elements with an array
initializer, a comma-separated list of expressions (called an
initializer list) enclosed in braces.

» The array length is determined by the number of elements in the
initializer list.

» The app in Fig. 8.3 initializes an integer array with 5 values (line 10)
and displays the array in tabular format.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.3: InitArray.cs

2 // Initializing the elements of an array with an array initializer.
3 using System;

4

5 <class InitArray

6 {

7 static void Main()

8 {

9 // initializer list specifies the value of each element
10 int[] array = {32, 27, 64, 18, 95};

11

12 Console.WriteLine($"{"Index"}{"Value",8}"); // headings
13

14 // output each array element's value

15 for (int counter = 0; counter < array.lLength; ++counter)
16 {

17 Console.WriteLine($" {counter,5}{array[counter],8}");
18 }

19 }
20 }

Fig. 8.3 | Initializing the elements of an array with an array initializer. (Part | of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Index Value

0 32
1 27
2 64
3 18
4 95

Fig. 8.3 | Initializing the elements of an array with an array initializer. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.4 Examples Using Arrays (cont.)

8.4.3 Calculating a Value to Store in Each Array Element

» The app in Fig. 8.4 creates a 5-element array and assigns to
each element one of the even integers from 2 to 10 (2, 4, 6,
8, 10).

» Constants must be initialized when they’re declared and
cannot be modified thereafter.

» Constants use the same Pascal Case naming conventions as
classes, methods and properties.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

// Fig. 8.4: InitArray.cs
// Calculating values to be placed into the elements of an array.
using System;

class InitArray

static void Main()
const int ArraylLength = 5; // create a named constant
int[] array = new irt[Ar“ayLergth], // create array

// calculate value for each array element
for (int counter = 0; counter < array.Length; ++counter)

{

array[counter] = 2 + 2 * counter;

}

NN WN=0OVOOO~NOOTUBEWN=

Fig. 8.4 | Calculating values to be placed into the elements of an array. (Part | of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

I8 Console.WriteLine($"{"Index"}{"Value",8}"); // headings
19

20 // output each array element's value

21 for (int counter = 0; counter < array.lLength; ++counter)
22 {

23 Console.WriteLine($"{counter, 5}{array[counter],8}");
24 }

25 }

26 }

Index Value

0 2
il it
2 6
3 8
4 10

Fig. 8.4 | Calculating values to be placed into the elements of an array. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

%

Good Programming Practice 8.1

Constants are also called named constants. Apps using
constants often are more readable than those that use lit-
eral values (e.g., 5)—a named constant such as Array-
Length clearly indicates its purpose, whereas the literal
value 5 could have different meanings based on the con-
text in which it's used. Another advantage to using
named constants is that if the constant’s value must be
changed, the change is necessary only in the declaration,
thus reducing code-maintenance costs.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Good Programming Practice 8.2

| Defining the size of an array as a named constant instead
of a literal makes code clearer. This technique eliminates
so-called magic numbers. For example, repeatedly men-
tioning the size 5 in array-processing code for a five-ele-
ment array gives the number 5 an artificial significance
and can be confusing when the program includes other
5 that have nothing to do with the array size.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

a2 Common Programming Error 8.2
R Assigning a value to a named constant afier it’s been ini-
tialized is a compilation error.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

s Common Programming Error 8.3
Ai Attemptmg to declare a named constant without initial-
izing it is a compilation error.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.4 Examples Using Arrays (Cont.)

8.4.4 Summing the Elements of an Array

» The app in Fig. 8.5 sums the values contained in a 10-
element integer array.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

ooo~NSOTBNDE WN -

10
11
12
13
14
15
16
17
18
19
20

// Fig. 8.5: SumArray.cs
// Computing the sum of the elements of an array.
using System;

class SumArray

{
static void Main()
{
int[] array = {87, 68, 94, 100, 83, 78, 85, 91, 76, 87};
int total = 0;
// add each element's value to total
for (int counter = 0; counter < array.lLength; ++counter)
{
total += array[counter]; // add element value to total
}
Console.WriteLine($"Total of array elements: {total}");
}
}

Total of array elements: 849

Fig. 8.5 | Computing the sum of the elements of an array.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.4 Examples Using Arrays (Cont.)

8.4.5 Iterating Through Arrays with foreach

» The foreach statement iterates through the elements of an entire
array or collection.

» The syntax of a foreach statement is:
foreach (type identifier in arrayName)

{

statement

}

= type and identifier are the type and name (e.g., int number) of
the iteration variable.

= arrayName is the array through which to iterate.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.4 Examples Using Arrays (Cont.)

8.4.5 Iterating Through Arrays with foreach

» The type of the iteration variable must be consistent with
the type of the elements in the array.

» The iteration variable represents successive values in the
array on successive iterations of the foreach statement.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.4 Examples Using Arrays (Cont.)

» Figure 8.6 uses the foreach statement to calculate the sum
of the integers in an array of student grades.

» The foreach statement can be used in place of the for
statement whenever code looping through an array does
not need to know the index of the current array element.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

3 Common Programming Error 8.4
Any attempt to change the iteration variable’s value in
the body of a foreach statement results in a compila-
tion error.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.6: ForEachTest.cs

2 // Using the foreach statement to total integers in an array.
3 using System;

4

5 class ForEachTest

6 {

7 static void Main()

8 {

9 int[] array = {87, 68, 94, 100, 83, 78, 85, 91, 76, 87};
10 int total = 0;

11

12 // add each element's value to total

13 foreach (int number in array)

14 {

15 total += number;

16 }

17

18 Console.WriteLine($"Total of array elements: {total}l");
19 }
20 }

Total of array elements: 849

Fig. 8.6 | Using the foreach statement to total integers in an array.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 8.5

Attempting to modify an array elements value using a
foreach statement s iteration variable is a logic error—
the iteration variable can be used only to access each ar-
ray elements value, not modify it.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.4 Examples Using Arrays (Cont.)

8.4.6 Using Bar Charts to Display Array Data Graphically;
Introducing Type Inference with var

» The app in Fig. 8.7 stores grade distribution data in an array of 11
elements, each corresponding to a category of grades.

» array|[0] indicates the number of grades in the range 0-9.
» array|[7] indicates the number of grades in the range 70-79.
» array|[10] indicates the number of 100 grades.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.7: BarChart.cs

2 // Bar chart displaying app.

3 using System;

4

5 class BarChart

6 {

7 static void Main(Q)

8 {

9 int[] array = {O, O, O, O, O, O, 1, 2, 4, 2, 1}; // distribution
10

11 Console.WriteLine("Grade distribution:");
12

Fig. 8.7 | Bar chart displaying app. (Part | of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

13 // for each array element, output a bar of the chart

14 for (var counter = 0; counter < array.lLength; ++counter)
15 {

16 // output bar labels ("00-09: ", ..., "90-99: ", "100: ")
17 if (counter == 10)

18 {

19 Console.Write(" 100: ");

20 }

21 else

22 {

23 Console.Write($"{counter * 10:D2}-{counter * 10 + 9:D2}: ");
24 ¥

25

26 // display bar of asterisks

27 for (var stars = 0; stars < array[counter]; ++stars)
28 {

29 Console.Write("*");

30 }

31

32 Console.WriteLine(); // start a new line of output
33 }

34 }

35 }

Fig. 8.7 | Bar chart displaying app. (Part 2 of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ##*w¥*
90-99: =%
10]e)e

Fig. 8.7 | Bar chart displaying app. (Part 3 of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.4 Examples Using Arrays (Cont.)

8.4.7 Using the Elements of an Array as Counters

» An array version of our die-rolling app from Fig. 7.7 is shown in
Fig. 8.8.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 8.6
Initializer lists can be used with both arrays and collec-

L]

tions. If an implicitly typed local variable is initialized
via an initializer list without new[], a compilation er-
ror occurs, because the compiler cannot infer whether the
variable should be an array or a collection. We use a
List collection in Chapter 9 and cover collections in de-

tail in Chapter 21.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

OCoO~NOTUKNDE WN -

10
I
12
13
14
15
16

// Fig. 8.8: RollDie.cs
// Roll a six-sided die 60,000,000 times.
using System;

class Roll1Die

{

static void Main(Q)

{

var randomNumbers = new Random(); // random-number generator
var frequency = new int[7]; // array of frequency counters

// roll die 60,000,000 times; use die value as frequency index
for (var roll = 1; roll <= 60000000; ++roll)

{
}

++frequency[randomNumbers.Next(1l, 7)];

Fig. 8.8 | Roll a six-sided die 60,000,000 times. (Part | of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

17

I8 Console.WriteLine($"{"Face"}{"Frequency",10}");

19

20 // output each array element's value

21 for (var face = 1; face < frequency.Length; ++face)
22 {

23 Console.WriteLine($"{face,4}{frequency[face],10}");
24 }

25 }

26 }

Face Frequency
1 10004131
2 9998200
3 10003734
4 9999332
5 9999792
6 9994811

Fig. 8.8 | Roll a six-sided die 60,000,000 times. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.5 Using Arrays to Analyze Survey Results; Intro

to Exception Handling
» Figure 8.9 uses arrays to summarize data collected in a
survey:

= Twenty students were asked to rate on a scale of 1 to 5 the quality
of the food in the student cafeteria, with 1 being “awful” and 5
being “excellent.” Place the 20 responses in an integer array and
determine the frequency of each rating.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.5 Using Arrays to Analyze Survey Results; Intro
to Exception Handling

» When a C# program executes, the runtime checks array element indices

for validity—all indices must be greater than or equal to 0 and less than
the length of the array.

» Any attempt to access an element outside that range of indices results in a
runtime error that's known as an IndexOutOfRangeException.

» At the end of this section, we’ll discuss the invalid response value,
demonstrate array bounds checking and introduce C#’s exception-

handling mechanism, which can be used to detect and handle an
IndexOutOfRangeException.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.9: StudentPoll.cs

2 // Poll analysis app.

3 using System;

4

5 «class StudentPoll

6 {

7 static void Main()

8 i

9 // student response array (more typically, input at runtime)
10 int[] responses = {1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3,
(| 2, 3, 3, 2, i4};

12 var frequency = new int[6]; // array of frequency counters
13

Fig. 8.9 | Poll analysis app. (Part | of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

14 // for each answer, select responses element and use that value

15 // as frequency index to determine element to increment
16 for (var answer = 0; answer < responses.lLength; ++answer)
17 {

8 try

19 {

20 ++frequency[responses[answer]];

21 }

22 catch (IndexOutOfRangeException ex)

23 {

24 Console.WriteLine(ex.Message);

25 Console.WritelLine(

26 $" responses|[{answer}]| = {responses[answer]}\n");
27 }

28 }

Fig. 8.9 | Poll analysis app. (Part 2 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

29

30 Console.WriteLine($"{"Rating"}{"Frequency",10}");

31

32 // output each array element's value

33 for (var rating = 1; rating < frequency.lLength; ++rating)
34 {

35 Console.WriteLine($"{rating,6}{frequency[rating],10}");
36 }

37 }

38 }

Fig. 8.9 | Poll analysis app. (Part 3 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Index was outside the bounds of the array.
responses[19] = 14

Rating Frequency

Ui WhN R
NN OO B W

Fig. 8.9 | Poll analysis app. (Part 4 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.5 Using Arrays to Analyze Survey Results; Intro
to Exception Handling

Exception Handling: Processing the Incorrect Response

» An exception indicates a problem that occurs while a
program executes.

» Exception handling enables you to create fault-tolerant
programs that can resolve (or handle) exceptions.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.5 Using Arrays to Analyze Survey Results; Intro

to Exception Handling

» In many cases, this allows a program to continue executing
as if no problems were encountered.

» More severe problems might prevent a program from
continuing normal execution, instead requiring the program
to notify the user of the problem, then terminate.

» When the runtime or a method detects a problem, such as
an invalid array index or an invalid method argument, it
throws an exception—that is, an exception occurs.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.5 Using Arrays to Analyze Survey Results; Intro
to Exception Handling

The try Statement

» To handle an exception, place any code that might throw an
exception in a try statement.

» The try block contains the code that might throw an
exception, and the catch block contains the code that
handles the exception if one occurs.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.5 Using Arrays to Analyze Survey Results; Intro
to Exception Handling

Executing the catch Block

» Because the runtime performs array bounds checking, it
generates an exception—specifically line 20 throws an
IndexOutOfRangeException to notify the program of this
problem.

» At this point the try block terminates and the catch block

begins executing—if you declared any variables in the try

block, they no longer exist, so they’re not accessible in the
catch block.

8.5 Using Arrays to Analyze Survey Results; Intro
to Exception Handling

» The catch block declares a type
(IndexOutOfRangeException) and an exception
parameter (ex).

» The catch block can handle exceptions of the specified
type.

» Inside the catch block, you can use the parameter’s
identifier to interact with a caught exception object.

=z, Error-Prevention Tip 8.1
T When writing code to access an array element, ensure

that the array index remains greater than or equal to 0
and less than the length of the array. This will help pre-
vent IndexOutOfRangeExceptions in your pro-

gram.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.5 Using Arrays to Analyze Survey Results; Intro
to Exception Handling

Message Property of the Exception Parameter

» When lines 22-27 catch the exception, the program displays
a message indicating the problem that occurred.

» Line 24 uses the exception object’'s Message property to

get the error message that's stored in the exception object
and display it.

8.6 Case Study: Card Shuffling and Dealing
Simulation

Class Card and Getter-Only Auto-Implemented Properties

» Class Card (Fig. 8.10) represents a playing card that has a
face and a suit.

» Prior to C# 6, auto-implemented properties required both a
get and a set accessor.

» CH# 6 getter-only auto-implemented properties are read
only.

I JfF Fig: 8:10: Cars.Cs

2 // Card class represents a playing card.

3 <class Card

4 {

5 private string Face { get; } // Card’s face ("Ace", "Deuce", ...)
6 private string Suit { get; } // Card’s suit ("Hearts", "Diamonds",
7

8 // two-parameter constructor initializes card's Face and Suit

9 public Card(string face, string suit)

i0 {

11 Face = face; // initialize face of card

12 Suit = suit; // initialize suit of card

13 }

14

15 // return string representation of Card

16 public override string ToString() => $"{Face} of {Suit}";

17 }

Fig. 8.10 | Card class represents a playing card.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.6 Case Study: Card Shuffling and Dealing
Simulation

Class Card and Getter-Only Auto-Implemented Properties

» Getter-only auto-implemented properties can be initialized
only either in their declarations or in all of the type’s
constructors.

» Initializing an auto-implemented property in its declaration
is another C# 6 feature known as auto-property initializers.
» Type PropertyName { get; set; } = initializer;

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.6 Case Study: Card Shuffling and Dealing
Simulation

Class DeckOfCards

» Class DeckOfCards (Fig. 8.11) represents a deck of 52 Card
objects.

OCoO~NONNE WN -

10
1
12
13

// Fig. 8.11: DeckOfCards.cs
// DeckOfCards class represents a deck of playing cards.
using System;

class DeckOfCards

{
// create one Random object to share among DeckOfCards objects
private static Random randomNumbers = new Random();

private const int NumberOfCards = 52; // number of cards in a deck
private Card[] deck = new Card[NumberOfCards];
private int currentCard = 0; // index of next Card to be dealt (0-51)

Fig. 8.11 | DeckOfCards class represents a deck of playing cards. (Part | of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

14 // constructor fills deck of Cards

15 public DeckOfCards()

16 {

17 string[] faces = {"Ace", "Deuce", "Three", "Four"”, "Five", "Six",
18 "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King"};

19 string[] suits = {"Hearts", "Diamonds", "Clubs", "Spades"};

20

21 // populate deck with Card objects

22 for (var count = 0; count < deck.Length; ++count)

23 {

24 deck[count] = new Card(faces[count % 13], suits[count / 13]);
25 }

26 }

27

Fig. 8.11 | DeckOfCards class represents a deck of playing cards. (Part 2 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

// shuffle deck of Cards with one-pass algorithm

public void Shuffle()

{

dealing should start at deck[0] again

// after shuffling,
» // reinitialize currentCard

currentCard =

// for each Card, pick another random Card and swap them
for (var first = 0; first < deck.Length; ++first)

// select a random number between 0 and 51
var second = randomNumbers.Next(NumberOfCards);

// swap current Card with randomly selected Card
Card temp = deck[first];

deck[first] = deck[second];

deck[second] = temp;

Fig. 8.11 | DeckOfCards class represents a deck of playing cards. (Part 3 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

47 // deal one Card

48 public Card DealCard()

49 {

50 // determine whether Cards remain to be dealt

51 if (currentCard < deck.Length)

52 {

53 return deck[currentCard++]; // return current Card in array
54 }

55 else

56 {

57 return null; // indicate that all Cards were dealt
58 }

59 }

60 }

Fig. 8.11 | DeckOfCards class represents a deck of playing cards. (Part 4 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.6 Case Study: Card Shuffling and Dealing
Simulation

Shuffling and Dealing Cards

» The app of Fig. 8.12 demonstrates the card dealing and
shuffling capabilities of class DeckOfCards.

1 // Fig. 8.12: DeckOfCardsTest.cs

2 // Card shuffling and dealing app.

3 using System;

4

5 class DeckOfCardsTest

6 {

7 // execute app

8 static void Main(Q)

9 {

10 var myDeckOfCards = new DeckOfCards();

11 myDeckOfCards.Shuffle(); // place Cards in random order
12

13 // display all 52 Cards in the order in which they are dealt
14 for (var i = 0; 1 < 52; ++1i)

15 {

16 Console.Write($" {myDeckOfCards.DealCard(),-19}");
17

18 if (G +1) %4 ==0)

19 {

20 Console.WriteLine();

21 }

22 }

23 }

24 }

Fig. 8.12 | Card-shuffling-and-dealing app. (Part | of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Eight of Clubs
Ace of Spades
Three of Diamonds
Ace of Hearts
Jack of Hearts
Queen of Spades
Four of Clubs
Eight of Diamonds
King of Diamonds
Queen of Clubs
Ace of Diamonds
Queen of Diamonds
Nine of Hearts

Ten of Clubs
Jack of Spades
Five of Clubs
Ten of Hearts
Nine of Spades
Seven of Diamonds
Ten of Diamonds
King of Hearts
Six of Spades
King of Clubs
Deuce of Diamonds
Jack of Diamonds
Three of Hearts

Ten of Spades
Three of Spades
Eight of Spades
Deuce of Hearts
Four of Hearts
Five of Diamonds
Jack of Clubs
Three of Clubs
Deuce of Spades
Queen of Hearts
Four of Diamonds
Six of Hearts
Six of Clubs

Four of Spades
Seven of Spades
Five of Hearts
Deuce of Clubs
Seven of Clubs
Ace of Clubs
Six of Diamonds
King of Spades
Five of Spades
Seven of Hearts
Nine of Clubs
Nine of Diamonds
Eight of Hearts

Fig. 8.12 | Card-shuffling-and-dealing app. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.7 Passing Arrays and Array Elements to Methods

» To pass an array argument to a method, specify the name of
the array without any brackets.

Specifying an Array Parameter

» For a method to receive an array reference through a method
call, the method’s parameter list must specify an array
parameter.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.7 Passing Arrays and Array Elements to Methods

Pass-By-Value vs. Pass-By-Reference

» When an argument to a method is an entire array or an
individual array element of a reference type, the called
method receives a copy of the reference.

» When an argument to a method is an individual array
element of a value type, the called method receives a copy of
the element’s value.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.7 Passing Arrays and Array Elements to
Methods (cont.)

Passing an Entire Array vs. Passing a Single Array
Element

» To pass an individual array element to a method, use the indexed
name of the array as an argument in the method call.

» Figure 8.13 demonstrates the difference between passing an entire
array and passing a value-type array element to a method.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.13: PassArray.cs

2 // Passing arrays and individual array elements to methods.

3 using System;

4

5 class PassArray

6 {

7 // Main creates array and calls ModifyArray and ModifyElement
8 static void Main()

9 {

10 int[] array = {1, 2, 3, 4, 5};

11

12 Console.WriteLine("Effects of passing reference to entire array:");
13 Console.WriteLine("The values of the original array are:");
14

15 // output original array elements

16 foreach (var value in array)

17 {

I8 Console.Write($" {valuel}");

19 }
20

Fig. 8.13 | Passing arrays and individual array elements to methods. (Part | of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

21 ModifyArray(array):; // pass array reference

22 Console.WriteLine("\n\nThe values of the modified array are:");
23

24 // output modified array elements

25 foreach (var value in array)

26 {

27 Console.Write($" {value}");

28 }

29

30 Console.WriteLine("\n\nEffects of passing array element value:\n" +
31 $"array[3] before ModifyElement: {array[3]}");

32

33 ModifyElement(array[3]); // attempt to modify array[3]

34 Console.WriteLine($"array[3] after ModifyElement: {array[3]1}");
35 }

36

Fig. 8.13 | Passing arrays and individual array elements to methods. (Part 2 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

)

37 // multiply each element of an array by 2

38 static void ModifyArray(int[] array2)

39 {

40 for (var counter = 0; counter < array2.Length; ++counter)
41 {

42 array2[counter] *= 2;

43 }

44 }

45

46 // multiply argument by 2

47 static void ModifyElement(int element)

48 {

49 element *= 2;

50 Console.WriteLine($"Value of element in ModifyElement: {element}");
51 }

52 }

Fig. 8.13 | Passing arrays and individual array elements to methods. (Part 3 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Effects of passing reference to entire array:
The values of the original array are:
2 S 5

The values of the modified array are:
2 4 6 8 10

Effects of passing array element value:
array[3] before ModifyElement: 8

Value of element in ModifyElement: 16
array[3] after ModifyElement: 8

Fig. 8.13 | Passing arrays and individual array elements to methods. (Part 4 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.8 Case Study: GradeBook Using an Array to Store
Grades

Storing Student Grades in an Array in Class GradeBook

» Fig. 8.14 shows the output of a program that tests class
GradeBook.

» Class GradeBook (Fig. 8.15) uses an array of integers to
store the grades of several students on a single exam.

Welcome to the grade book for
CS101 Introduction to C# Programming!

The grades are:

Student 1 87
Student 2 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7: 85
Student 8 91
Student 9: 76
Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade 1is 100

Fig. 8.14 | Output of the GradeBook example that stores one exam’s grades in an array. (Part |
of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: #*¥*
90-99: =**
100 =

Fig. 8.14 | Output of the GradeBook example that stores one exam’s grades in an array. (Part 2
of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.15: GradeBook.cs

2 // Grade book using an array to store test grades.
3 using System;

4

5 class GradeBook

6 {

7 private int[] grades; // array of student grades
8

9 // getter-only auto-implemented property CourseName
10 public string CourseName { get; }

I

Fig. 8.15 | Grade book using an array to store test grades. (Part | of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12 // two-parameter constructor initializes

13 // auto-implemented property CourseName and grades array
14 public GradeBook(string name, int[] gradesArray)

15 {

16 CourseName = name; // set CourseName to name

17 grades = gradesArray; // initialize grades array

18 }

19

20 // display a welcome message to the GradeBook user

21 public void DisplayMessage()

22 {

23 // auto-implemented property CourseName gets the name of course
24 Console.WriteLine(

25 $"Welcome to the grade book for\n{CourseName}!\n");
26 }

27

Fig. 8.15 | Grade book using an array to store test grades. (Part 2 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

28
29
30
3
32
33
34
35
36
37
38
39
40
41
42
43
44

// perform various operations on the data
public void ProcessGrades()

{

// output grades array
OutputGrades();

// call
Console.

/ / el B
i €all
Console.

Console.

// call

method GetAverage to calculate the average grade
WriteLine($"\nClass average is {GetAverage():F}");
methods GetMinimum and GetMaximum
WriteLine($"Lowest grade is {GetMinimum()1}");
WriteLine($"Highest grade is {GetMaximum()3}\n");

OutputBarChart to display grade distribution chart

OutputBarChart();

Fig. 8.15 | Grade book using an array to store test grades. (Part 3 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

45 // find minimum grade

46 public int GetMinimum()

47 {

48 var lowGrade = grades[0]; // assume grades[0] is smallest
49

50 // loop through grades array

51 foreach (var grade 1in grades)

52 {

53 // 1T grade lower than lowGrade, assign it to lowGrade
54 if (grade < lowGrade)

55 {

56 lowGrade = grade; // new lowest grade

57 I

58 }

59

60 return lowGrade; // return Towest grade

61 }

62

Fig. 8.15 | Grade book using an array to store test grades. (Part 4 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

// Tind maximum grade
public int GetMaximum()

{

var highGrade = grades[0]; // assume grades[0] is largest

// loop through grades array
foreach (var grade in grades)

{
// 1f grade greater than highGrade, assign it to highGrade
if (grade > highGrade)
{
highGrade = grade; // new highest grade
}
}

return highGrade; // return highest grade

Fig. 8.15 | Grade book using an array to store test grades. (Part 5 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

81 // determine average grade for test

82 public double GetAverage()

83 {

84 var total = 0.0; // initialize total as a double
85

86 // sum students' grades

87 foreach (var grade in grades)
88 {

89 total += grade;

90 }

91

92 // return average of grades
93 return total / grades.lLength;
94 }

95

Fig. 8.15 | Grade book using an array to store test grades. (Part 6 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

96

97

98

99

100
101
102
103
104
105
106
107
108
109

// output bar chart displaying grade distribution
public void OutputBarChart()

{

Console.WriteLine("Crade distribution:");

// stores frequency of grades in each range of 10 grades
var frequency = new int[11];

// for each grade, increment the appropriate frequency
foreach (var grade 1in grades)

{
}

++frequency[grade / 101];

Fig. 8.15 | Grade book using an array to store test grades. (Part 7 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

110
1l
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131

}

// for each grade frequency, display bar in chart
for (var count = 0; count < frequency.lLength; ++count)

// output bar label ("00-09: ", ..., "90-99: ", "100:
if (count == 10)
{
Console.Write(" 100: ");
}
else
{
Console.Write($"{count * 10:D2}-{count * 10 + 9:D2}:
}

" display bar of asterisks
for (var stars = 0; stars < frequency[count]; ++stars)

{
}

Console.Write("*");

Console.WriteLine(); // start a new line of output

Fig. 8.15 | Grade book using an array to store test grades. (Part 8 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

132

133 // output the contents of the grades array

134 public void OutputGrades()

135 {

136 Console.WriteLine("The grades are:\n");

137

138 // output each student's grade

139 for (var student = 0; student < grades.Length; ++student)
140 {

141 Console.WriteLine(

142 $"Student {student + 1, 2}: {grades[student],3}");
143 }

144 }

145 }

Fig. 8.15 | Grade book using an array to store test grades. (Part 9 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.9 Case Study: Class GradeBook Using an Array to Store
Grades (cont.)

Class GradeBookTest That Demonstrates Class
GradeBook

» The app in Fig. 8.16 demonstrates class GradeBook.

]

v Software Engineering Observation 8. |
BN A test harness (or test app) creates an object of the class

to test and provides it with data, which could be placed
dirvectly into an array with an array initializer, come
from the user at the keyboard or come from a file (as
you Ul see in Chapter 17). After initializing an object, the
test harness uses the object’s members to manipulate the
data. Gathering data in the test harness like this allows
the class to manipulate data from several sources.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

| // Fig. 8.16: GradeBookTest.cs

2 // Create a GradeBook object using an array of grades.

3 class GradeBookTest

4 {

5 // Main method begins app execution

6 static void Main()

7 {

8 // one-dimensional array of student grades

9 int[] gradesArray = {87, 68, 94, 100, 83, 78, 85, 91, 76, 87};
10

11 var myGradeBook = new GradeBook(

12 "CS101 Introduction to C# Programming", gradesArray);
13 myGradeBook.DisplayMessage();

14 myGradeBook.ProcessGrades();

15 }

16 }

Fig. 8.16 | Create a GradeBook object using an array of grades.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.9 Multidimensional Arrays

» Two-dimensional arrays are often used to represent
tables of values consisting of information arranged in rows
and columns.

» To identify a particular table element, we must specify two
indices. By convention, the first identifies the element’s row
and the second its column.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.9 Multidimensional Arrays (Cont.)

Rectangular Arrays

» In rectangular arrays, each row has the same number of
columns.

» Figure 8.17 illustrates a three-by-four rectangular array
named a.

» An array with m rows and n columns is called an m-
by-n array.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Column 0 Column | Column 2 Column 3
Row 0 a0, 0] af0, 1] al0, 2] a[0, 3]
Row | al[l, 0] al[l, 1] al[l, 2] a[Ess]
Row 2 a[2, 0] af2, 1] a2 21 al[2, 3]
T T—Columnindex
Row index
Array name

Fig. 8.17 | Rectangular array with three rows and four columns.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.9 Multidimensional Arrays (Cont.)

Array-Access Expression for a Two-Dimensional Rectangular Array
» Every element in array a is identified by an array-access expression
of the form a[row, column];
Array Initializer for a Two-Dimensional Rectangular Array
» A two-by-two rectangular array b can be declared and initialized
with nested array initializers as follows:
int[,] b = {{1, 2}, {3, 4}};
= The initializer values are grouped by row in braces.

» The compiler will generate an error if the number of initializers in
each row is not the same, because every row of a rectangular array
must have the same number of columns

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.9 Multidimensional Arrays (Cont.)

Jagged Arrays

e Ajagged array is a one-dimensional array whose elements
are one-dimensional arrays.

* The lengths of the rows in the array need not be the same.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.9 Multidimensional Arrays (Cont.)

Array Initializer for a Two-Dimensional Jagged Array
 Elementsin ajagged array are accessed using an array-
access expression of the form arrayName[row] [column].
e Ajagged array with three rows of different lengths could be
declared and initialized as follows:
int[][] jagged = {new int[] {1, 2},
new int[] {3},
new int[] {4, 5, 6}};

8.9 Multidimensional Arrays (Cont.)

e Figure 8.18 illustrates the array reference jagged after it
has been declared and initialized.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

jagged

Fig. 8.18 | Jagged array with three rows of different lengths.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.10 Multidimensional Arrays (Cont.)

Creating Two-Dimensional Arrays with Array-Creation Expressions
e A rectangular array can be created with an array-creation expression:
int[,] b;
b = new int[3, 4];
e Ajagged array cannot be completely created with a single array-
creation expression. Each one-dimensional array must be initialized
separately.

e Ajagged array can be created as follows:
int[][] c;
c = new int[2][]; // create 2 rows
c[@] = new int[5]; // create 5 columns for row ©
c[1] = new int[3]; // create 3 columns for row 1

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.10 Multidimensional Arrays (Cont.)

Two-Dimensional Array Example: Displaying Element
Values

e Figure 8.19 demonstrates initializing rectangular and jagged

arrays with array initializers and using nested for loops to
traverse the arrays.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.19: InitArray.cs

2 // Initializing rectangular and jagged arrays.

3 using System;

4

5 <class InitArray

6 {

7 // create and output rectangular and jagged arrays

8 static void Main(Q)

9 {

10 // with rectangular arrays,

11 // every row must be the same length.

12 int[,] rectangular = {{1, 2, 3}, {4, 5, 6}};

13

14 // with jagged arrays,

15 // we need to use "new int[]" for every row,

16 // but every row does not need to be the same length.
17 int[][] jagged = {new int[] {1, 2},

18 new int[] {3},

19 new int[] {4, 5, 6}};
20
21 OutputArray(rectangular); // displays array rectangular by row
22 Console.WriteLine(); // output a blank Tine
23 OutputArray(jagged); // displays array jagged by row
24 }

Fig. 8.19 | Initializing jagged and rectangular arrays. (Part | of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

25

26 // output rows and columns of a rectangular array

27 static void OutputArray(int[,] array)

28 {

29 Console.WriteLine("Values in the rectangular array by row are");
30

31 // loop through array's rows

32 for (var row = 0; row < array.GetLength(0); ++row)

33 {

34 // loop through columns of current row

35 for (var column = 0; column < array.GetLength(l); ++column)
36 {

37 Console.Write($"{array[row, column]} ");

38 }

39

40 Console.WriteLine(); // start new line of output

41 }

42 }

43

Fig. 8.19 | Initializing jagged and rectangular arrays. (Part 2 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

44 // output rows and columns of a jagged array

45 static void OutputArray(int[][] array)

46 {

47 Console.WriteLine("Values in the jagged array by row are");
48

49 // loop through each row

50 foreach (var row in array)

51 {

52 // loop through each element in current row

53 foreach (var element in row)

54 {

55 Console.Write($"{element} ");

56 }

57

58 Console.WriteLine(); // start new line of output
59 }

60 }

61 }

Fig. 8.19 | Initializing jagged and rectangular arrays. (Part 3 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Values in the rectangular array by row are

253

4 5 ©

Values in the jagged array by row are
il 7

3

4 5 6

Fig. 8.19 | Initializing jagged and rectangular arrays. (Part 4 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.10 Case Study: GradeBook Using a Rectangular
Array

Storing Student Grades in a Rectangular Array in Class

GradeBooR

 Figure 8.20 shows the output of a program that manipulates
a GradeBook (Fig. 8.21) that uses a rectangular array grades
to store the grades of a number of students on multiple
exams.

Welcome to the grade book for
CS101 Introduction to C# Programming!

The grades are:

Test 1 Test 2 Test 3 Average

Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 LT 67
Student © 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 VT a1
Student 10 87 93 73 84.33

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Fig. 8.20 | Output of GradeBook that uses two-dimensional arrays. (Part | of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Overall grade distribution:
00-09:

10-19:

20-29:

30-39:

40-49:

50-59:

60-69: ***

70_79: whRNHh%

Fig. 8.20 | Output of GradeBook that uses two-dimensional arrays. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.21: GradeBook.cs

2 // Grade book using a rectangular array to store grades.

3 using System;

4

5 class GradeBook

6 {

7 private int[,] grades; // rectangular array of student grades
8

9 // auto-implemented property CourseName

10 public string CourseName { get; }

11

12 // two-parameter constructor initializes

13 // auto-implemented property CourseName and grades array
14 public GradeBook(string name, int[,] gradesArray)

15 {

16 CourseName = name; // set CourseName to name

17 grades = gradesArray; // initialize grades array

I8 }

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part | of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

19

20 // display a welcome message to the GradeBook user

21 public void DisplayMessage()

22 {

23 // auto-implemented property CourseName gets the name of course
24 Console.WritelLine(

25 $"Welcome to the grade book for\n{CourseName}!\n");

26 }

27

28 // perform various operations on the data

29 public void ProcessGrades()

30 {

31 // output grades array

32 OutputGrades();

33

34 // call methods CGetMinimum and GetMaximum

35 Console.WritelLine(

36 $"\nLowest grade in the grade book is {GetMinimum()}" +
37 $"\nHighest grade in the grade book is {GetMaximum()}\n");
38

39 // output grade distribution chart of all grades on all tests
40 OutputBarChart();

41 }

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 2 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

42

43 // find minimum grade

44 public int GetMinimum()

45 {

46 // assume first element of grades array is smallest
47 var lowGrade = grades[0, 0];

48

49 // loop through elements of rectangular grades array
50 foreach (var grade in grades)

51 {

52 // 1T grade less than lowCGrade, assign it to lowGrade
53 if (grade < lowGrade)

54 {

55 lowGrade = grade;

56 }

57 }

58

59 return lowGrade; // return lowest grade

60 }

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 3 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

61

62 // find maximum grade

63 public int GetMaximum()

64 {

65 // assume first element of grades array is largest
66 var highGrade = grades[0, 0];

67

68 // loop through elements of rectangular grades array
69 foreach (var grade in grades)

70 {

71 // 1f grade greater than highGrade, assign it to highGrade
72 if (grade > highGrade)

73 {

74 highGrade = grade;

75 }

76 }

77

78 return highGrade; // return highest grade

79 3

Fig. 8.21 |

Grade book using a rectangular array to store grades. (Part 4 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

80

8l // determine average grade for particular student
82 public double GetAverage(int student)

83 {

84 // get the number of grades per student

85 var gradeCount = grades.GetlLength(l);

86 var total = 0.0; // initialize total

87

88 // sum grades for one student

89 for (var exam = 0; exam < gradeCount; ++exam)
90 {

91 total += grades[student, exam];

92 }

93

94 // return average of grades

95 return total / gradeCount;

96 }

97

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 5 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

98 // output bar chart displaying overall grade distribution

J]

99 public void OutputBarChart()

100 {

101 Console.WriteLine("Overall grade distribution:");

102

103 // stores frequency of grades in each range of 10 grades
104 var frequency = new int[11];

105

106 // for each grade in GradeBook, increment the appropriate frequency
107 foreach (var grade 1in grades)

108 {

109 ++frequency[grade / 10];

110 }

11

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 6 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

}

// for each grade frequency, display bar in chart
for (var count = 0; count < frequency.lLength; ++count)

{

// output bar label ("00-09: ", ..., "90-99: ", "100:
if (count == 10)
{
Console.Write(" 100: ");
}
else
{
Console.Write($"{count * 10:D2}-{count * 10 + 9:D2}:
}

" display bar of asterisks
for (var stars = 0; stars < frequency[count]; ++stars)

{
}

Console.Write("*");

Console.WriteLine(); // start a new line of output

¥

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 7 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

134

135 // output the contents of the grades array

136 public void OutputGrades()

137 {

138 Console.WriteLine("The grades are:\n");

139 Console.Write(" "Y; // align column heads
140

141 // create a column heading for each of the tests

142 for (var test = 0; test < grades.GetLength(l); ++test)
143 {

144 Console.Write($"Test {test + 1} ");

145 }

146

147 Console.WriteLine("Average"); // student average column heading
148

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 8 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

149
150
151
152
153
154
155
156
157

i58
159
160
161
162
163
164
165 }

£

create rows/columns of text representing array grades

for (var student = 0; student < grades.GetLength(0); ++student)

{

Console.Write($"Student {student + 1,2}");

// output student's grades
for (var grade = 0; grade < grades.GetlLength(l); ++grade)

{
Console.Write($"{grades[student, grade],8}");

1
i

// call method GetAverage to calculate student's average grade;
// pass row number as the argument to GetAverage
Console.WriteLine($" {GetAverage(student),9:F}");

Fig. 8.21 | Grade book using a rectangular array to store grades. (Part 9 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

kg Software Engineering Observation 8.2
ﬁ,,. “Keep it simple” is good advice for most of the code you Il

write.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.10 Case Study: GradeBook Using a Rectangular
Array(Cont.)

Class GradeBookTest That Demonstrates Class GradeBooR
 The app in Fig. 8.22 demonstrates class GradeBook.

I // Fig. 8.22: GradeBookTest.cs

2 // Create a GradeBook object using a rectangular array of grades.
3 <class GradeBookTest

4

5 // Main method begins app execution

6 static void Main()

7 {

8 // rectangular array of student grades
9 int[,] gradesArray = {{87, 96, 70},

10 {68, 87, 90},

11 {94, 100, 90},
12 {100, 81, 82},
13 {83, 65, 85},

14 {78, 87, 65k,

15 {85 75 83

16 {91, 94, 100},
17 {76, 72, 34},

I8 {87, 93, 73}}:

Fig. 8.22 | Create a GradeBook object using a rectangular array of grades. (Part | of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

19

20 GradeBook myGradeBook = new GradeBook(

21 "CS101 Introduction to C# Programming"”, gradesArray);
22 myGradeBook.DisplayMessage();

23 myGradeBook.ProcessGrades();

24 }

25 }

Fig. 8.22 | Create a GradeBook object using a rectangular array of grades. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.11 Variable-Length Argument Lists

» Variable-length argument lists allow you to create methods
that receive an arbitrary number of arguments.

» The necessary params modifier can occur only in the
parameter list’s last parameter.

» Figure 8.23 demonstrates method Average, which receives
a variable-length sequence of doubles.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

w2 Common Programming Error 8.7
CE| The params modifier may be used only with the last pa-
rameter of the parameter list.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.23: ParamArrayTest.cs

2 // Using variable-length argument 1lists.

3 using System;

4

5 <class ParamArrayTest

6 {

7 // calculate average

8 static double Average(params double[] numbers)

9 {

10 var total = 0.0; // initialize total

11

12 // calculate total using the foreach statement
13 foreach (var d in numbers)

14 {

15 total += d;

16 }

17

18 return numbers.Length !'= 0 ? total / numbers.Length : 0.0;
19 }

20

Fig. 8.23 | Using variable-length argument lists. (Part | of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

21 static void Main()

22 {

23 var dl1 = 10.0;

24 var d2 = 20.0;

25 var d3 = 30.0;

26 var d4 = 40.0;

27

28 Console.WritelLine(

29 $"dl = {d1:F1}\nd2 = {d2:F1}\nd3 = {d3:F1}\nd4 = {d4:F1}\n");

30 Console.WriteLine($"Average of dl and d2 is {Average(dl, d2):F1}");
31 Console.WritelLine(

32 $"Average of dl, d2 and d3 1is {Average(dl, d2, d3):F1}");

33 Console.WritelLine(

34 $"Average of dl, d2, d3 and d4 is {Average(dl, d2, d3, d4):F1}");
35 }

36 }

Fig. 8.23 | Using variable-length argument lists. (Part 2 of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

diE= 00
d2 = 20.0
d3 = 30.0
d4 = 40.0

Average of dl and d2 is 15.0
Average of dl, d2 and d3 1is 20.0
Average of dl, d2, d3 and d4 1is 25.0

Fig. 8.23 | Using variable-length argument lists. (Part 3 of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.12 Using Command-Line Arguments

e You can pass command-line arguments to an app by including a
parameter of type string[] in the parameter list of Main.

e By convention, this parameter is named args.

e The execution environment passes the command-line arguments as
an array to the app’s Main method.

e The number of arguments passed from the command line is obtained
by accessing the array’s Length property.

« Command-line arguments are separated by whitespace, not commas.

e Figure 8.24 uses three command-line arguments to initialize an array.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 8.24: InitArray.cs

2 // Using command-1line arguments to initialize an array.

3 using System;

4

5 class InitArray

6 {

7 static void Main(string[] args)

8 {

9 // check number of command-1ine arguments
10 if (args.Length !'= 3)
11 {
12 Console.WritelLine(
13 "Error: Please re-enter the entire command, including\n" +
14 "an array size, initial value and increment.");
15 }
16 else
17 {
18 // get array size from first command-line argument
19 var arraylLength = int.Parse(args[0]);
20 var array = new int[arraylLength]; // create array
21

Fig. 8.24 | Using command-line arguments to initialize an array. (Part | of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

}

/ get initial value and increment from command-1ine argument
var initialValue = int.Parse(args[1]);
var increment = int.Parse(args[2]);

// calculate value for each array element
for (var counter = 0; counter < array.lLength; ++counter)

{
}

array[counter] = initialValue + increment * counter;

Console.WriteLine($"{"Index"}{"Value",8}");
// display array index and value
for (int counter = 0; counter < array.lLength; ++counter)

{
}

Console.WriteLine($"{counter,5}{array[counter],8}");

Fig. 8.24 | Using command-line arguments to initialize an array. (Part 2 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

C:\Users\PaulDe1itel\Documents\examples\ch0O8\fig08_24>InitArray.exe
Error: Please re-enter the entire command, including
an array size, initial value and increment.

C:\Users\PaulDeitel\Documents\examples\chO8\fig08_24>InitArray.exe 5 0 4
Index Value

0 0
1 4
2 8
3 2
4 16

Fig. 8.24 | Using command-line arguments to initialize an array. (Part 3 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

C:\Users\PaulDeitel\Documents\examples\ch08\fig08_24>InitArray.exe 10 1 2
Index Value
1
3
5
7
9
11
13
15
157
19

OOooONOOTUVh WNPREO

Fig. 8.24 | Using command-line arguments to initialize an array. (Part 4 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.13 Passing Arrays by Value and by Reference

» Changes to the local copy of a value-type argument in a
called method do not affect the original variable in the
caller.

» If the argument is of a reference type, the method makes a
copy of the reference, not a copy of the actual object that's
referenced.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

8.13 Passing Arrays by Value and by Reference
(Cont.)

» You can use keyword ref to pass a reference-type variable by
reference, which allows the called method to modify the original
variable in the caller and make that variable refer to a different
object.

» This is a subtle capability, which, if misused, can lead to problems.

» The app in Fig. 8.25 demonstrates the subtle difference between
passing a reference by value and passing a reference by reference
with keyword ref.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Performance Tip 8.1

@ Passing references to arrays and other objects makes sense
for performance reasons. If arrays were passed by value, a
copy of each element would be passed. For large, fre-
quently passed arrays, this would waste time and con-
sume considerable storage for the copies of the arrays.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

I // Fig. 8.25: ArrayReferenceTest.cs

2 // Testing the effects of passing array references

3 // by value and by reference.

4 using System;

5

6 class ArrayReferenceTest

7T {

8 static void Main(string[] args)

9 {
10 // create and initialize firstArray

11 int[] firstArray = {1, 2, 3};

12

13 // copy the reference in variable firstArray

14 int[] firstArrayCopy = firstArray;

15

16 Console.WriteLine("Test passing firstArray reference by value");
17 Console.Write(

I8 "Contents of firstArray before calling FirstDouble:\n\t");
19

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part | of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

20 // display contents of firstArray

21 foreach (var element in firstArray)

22 {

23 Console.Write($"{element} ");

24 }

25

26 // pass variable firstArray by value to FirstDouble
27 FirstDouble(firstArray);

28

29 Console.Write(

30 "\nContents of firstArray after calling FirstDouble\n\t");
31

32 // display contents of firstArray

33 foreach (var element in firstArray)

34 {

35 Console.Write($"{element} ");

36 }

37

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 2 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

38
39
40
41
42
43
44
45
46
47
48

// test whether reference was changed by FirstDouble
if (firstArray == firstArrayCopy)

{

Console.WriteLine("\n\nThe references refer to the same array");
}
else
{

Console.WritelLine(

"\n\nThe references refer to different arrays");

}

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 3 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

// create and initialize secondArray
int[] secondArray = {1, 2, 3};

// copy the reference in variable secondArray
int[] secondArrayCopy = secondArray;

Console.WritelLine(

"\nTest passing secondArray reference by reference");
Console.Write(

"Contents of secondArray before calling SecondDouble:\n\t");

// display contents of secondArray before method call
foreach (var element in secondArray)

{
}

Console.Write($"{element} ");

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 4 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

65
66
67
68
69
70
71
72
73
74
75
76
77

// pass variable secondArray by reference to SecondDouble
SecondDouble(ref secondArray);

Console.Write(
"\nContents of secondArray after calling SecondDouble:\n\t");

// display contents of secondArray after method call
foreach (var element in secondArray)

{
}

Console.Write($"{element} ");

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 5 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

78 // test whether reference was changed by SecondDouble

79 if (secondArray == secondArrayCopy)

80 {

81 Console.WriteLine("\n\nThe references refer to the same array");
82 }

83 else

84 {

85 Console.WriteLine(

86 "\n\nThe references refer to different arrays");
87 }

88 }

89

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 6 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

90 // modify elements of array and attempt to modify reference

91 static void FirstDouble(int[] array)

92 {

93 // double each element's value

94 for (var i = 0; i < array.Length; ++i)
95 {

96 array[i] *= 2;

97 }

98

99 // create new object and assign its reference to array
100 array = new int[] {11, 12, 13};

101 }

102

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 7 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

103 // modify elements of array and change reference array

104 // to refer to a new array

105 static void SecondDouble(ref int[] array)
106 {

107 // double each element's value

108 for (var i = 0; i < array.Length; ++i)
109 {

110 array[i] *= 2;

111 }

112

113 // create new object and assign its reference to array
114 array = new int[] {11, 12, 13};

115 }

116 }

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 8 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Test passing firstArray reference by value

Contents of firstArray before calling FirstDouble:
1L 72 3

Contents of firstArray after calling FirstDouble
2 46

The references refer to the same array

Test passing secondArray reference by reference

Contents of secondArray before calling SecondDouble:
1l 72 3

Contents of secondArray after calling SecondDouble:
1l abad gl

The references refer to different arrays

Fig. 8.25 | Testing the effects of passing an array reference by value and by reference. (Part 9 of 9.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

sz Software Engineering Observation 8.3

B8 When a method receives a reference-type parameter by
value, a copy of the object’s reference is passed. This
prevents a method from overwriting references passed to
that method. In the vast majority of cases, protecting the
caller’s reference from modification is the desired
behavior. If you encounter a situation where you truly
want the called procedure to modify the caller s reference,
pass the reference-type parameter using keyword ref—

but, again, such situations are rare.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

-

’,m, Software Engineering Observation 8.4

B ..1

& 2%

In C#, references to objects (including arrays) are passed
to called methods. A called method—receiving a
reference to an object in a caller—can interact with, and

possibly change, the caller’s object.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Exercises

» 8.6,8.7,8.14, and 8.16 (pp. 355-356 of the textbook)

