
Chapter	8	of	Visual	C#	How	to	Program,	6/e

©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Data	structures are	collections	of	related	data	items.
 Arrays are	data	structures	consisting	of	related	data	items	
of	the	same	type.

 Arrays	are	fixed‐length	entities—they	remain	the	same	
length	once	they’re	created.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 An	array	is	a	group	of	variables—called	elements—
containing	values	that	all	have	the	same	type.

 Arrays	are	reference	types—what	we	typically	think	of	as	an	
array	is	actually	a	reference	to	an	array	object.

 The	elements	of	an	array	can	be	either	value	types	or	
reference	types.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 To	refer	to	a	particular	element	in	an	array,	we	specify	the	
name	of	the	reference	to	the	array	the	element’s	position	in	
the	array,	which	is	called	the	element’s	index.

 Figure 8.1	shows	a	logical	representation	of	an	integer	array	
called	c containing	sample	values.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Elements	are	accessed	with	an	array‐access	expression
that	includes	the	name	of	the	array,	followed	by	the	index	of	
the	particular	element	in	square	brackets ([]).

 The	first	element	in	every	array	has	index	zero and	is	
sometimes	called	the	zeroth	element.

 An	index	must	be	a	nonnegative	integer	and	can	be	an	
expression.

 Every	array’s	length	is	stored	in	its	Length property.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 Since	arrays	are	objects,	they’re	typically	created	with	
keyword	new.

 To	create	an	array	object,	specify	the	type	and	the	number	
of	array	elements	as	part	of	an	array‐creation	expression
that	uses	keyword	new.

 The	following	declaration	and	array‐creation	expression	
create	an	array	object	containing	12	int elements	and	store	
the	array’s	reference	in	variable	c:

int[] c = new int[12];

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 Creating	the	array	also	can	be	performed	as	follows:
int[] c; // declare the array variable
c = new int[12]; // create the array; assign to array variable

 The	square	brackets	following	int indicate	that	c
will	refer	to	an	array	of	ints.

 The	array	variable	c receives	the	reference	to	a	new	
array	object	of	12	int elements.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 The	number	of	elements	can	also	be	specified	as	an	
expression	that's	calculated	at	execution	time.

When	an	array	is	created,	each	element	of	the	array	
receives	a	default	value:
 0 for	the	numeric	simple‐type	elements.
 false for	bool elements.
 null for	references.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Resizing	an	Array
 Though	arrays	are	fixed‐length	entities,	you	can	use	the	
static Arraymethod	Resizewhich	takes	two	
arguments—the	array	to	be	resized	and	the	new	length—
to	create	a	new	array	with	the	specified	length.
 Copies	the	contents	of	the	old	array	into	the	new	array
 Sets	the	array	variable	to	reference	the	new	array.

 Any	content	that	cannot	fit	into	the	new	array	is	truncated	
without	warning.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



8.4.1	Creating	and	Initializing	an	Array
 The	app	in	Fig. 8.2	uses	keyword	new to	create	an	array	of	
five	int elements.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



8.4.2	Using	an	Array	Initializer
 An	app	can	create	an	array	and	initialize	its	elements	with	an	array	
initializer,	a	comma‐separated	list	of	expressions	(called	an	
initializer	list)	enclosed	in	braces.

 The	array	length	is	determined	by	the	number	of	elements	in	the	
initializer	list.

 The	app	in	Fig. 8.3	initializes	an	integer	array	with	5	values	(line	10)	
and	displays	the	array	in	tabular	format.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



8.4.3	Calculating	a	Value	to	Store	in	Each	Array	Element
 The	app	in	Fig. 8.4	creates	a	5‐element	array	and	assigns	to	
each	element	one	of	the	even	integers	from	2	to	10	(2,	4,	6,	
8,	10).	

 Constants	must	be	initialized	when	they’re	declared	and	
cannot	be	modified	thereafter.

 Constants	use	the	same	Pascal	Case	naming	conventions	as	
classes,	methods	and	properties.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



8.4.4	Summing	the	Elements	of	an	Array	
 The	app	in	Fig. 8.5	sums	the	values	contained	in	a	10‐
element	integer	array.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



8.4.5 Iterating Through Arrays with foreach
 The foreach statement iterates through the elements of an entire
array or collection.

 The syntax of a foreach statement is:
foreach (type	identifier in arrayName)
{
statement

}
 type and	identifier are	the	type	and	name	(e.g.,	int number)	of	
the	iteration	variable.
 arrayName is	the	array	through	which	to	iterate.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



8.4.5 Iterating Through Arrays with foreach
 The type of the iteration variable must be consistent with
the type of the elements in the array.

 The	iteration	variable	represents	successive	values	in	the	
array	on	successive	iterations	of	the	foreach statement.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 Figure 8.6	uses	the	foreach statement	to	calculate	the	sum	
of	the	integers	in	an	array	of	student	grades.	

 The	foreach statement	can	be	used	in	place	of	the	for	
statement	whenever	code	looping	through	an	array	does	
not	need	to	know	the	index	of	the	current	array	element.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



8.4.6	Using	Bar	Charts	to	Display	Array	Data	Graphically;	
Introducing	Type	Inference	with	var
 The	app	in	Fig. 8.7	stores	grade	distribution	data	in	an	array	of	11	
elements,	each	corresponding	to	a	category	of	grades.	

 array[0] indicates	the	number	of	grades	in	the	range	0–9.
 array[7] indicates	the	number	of	grades	in	the	range	70–79.
 array[10] indicates	the	number	of	100	grades.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



8.4.7	Using	the	Elements	of	an	Array	as	Counters	
 An	array	version	of	our	die‐rolling	app	from	Fig. 7.7	is	shown	in	
Fig. 8.8.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Figure 8.9	uses	arrays	to	summarize	data	collected	in	a	
survey:	
 Twenty	students	were	asked	to	rate	on	a	scale	of	1	to	5	the	quality	
of	the	food	in	the	student	cafeteria,	with	1	being	“awful”	and	5	
being	“excellent.”	Place	the	20	responses	in	an	integer	array	and	
determine	the	frequency	of	each	rating.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 When	a	C#	program	executes,	the	runtime	checks	array	element	indices	
for	validity—all	indices	must	be	greater	than	or	equal	to	0	and	less	than	
the	length	of	the	array.	

 Any	attempt	to	access	an	element	outside that	range	of	indices	results	in	a	
runtime	error	that's	known	as	an	IndexOutOfRangeException.	

 At	the	end	of	this	section,	we’ll	discuss	the	invalid	response	value,	
demonstrate	array	bounds	checking and	introduce	C#’s	exception‐
handling	mechanism,	which	can	be	used	to	detect	and	handle	an	
IndexOutOfRangeException.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Exception	Handling:	Processing	the	Incorrect	Response
 An	exception indicates	a	problem	that	occurs	while	a	
program	executes.	

 Exception	handling	enables	you	to	create	fault‐tolerant	
programs	that	can	resolve	(or	handle)	exceptions.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 In	many	cases,	this	allows	a	program	to	continue	executing	
as	if	no	problems	were	encountered.	

 More	severe	problems	might	prevent	a	program	from	
continuing	normal	execution,	instead	requiring	the	program	
to	notify	the	user	of	the	problem,	then	terminate.	

When	the	runtime	or	a	method	detects	a	problem,	such	as	
an	invalid	array	index	or	an	invalid	method	argument,	it	
throws an	exception—that	is,	an	exception	occurs.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



The	try Statement	
 To	handle	an	exception,	place	any	code	that	might	throw	an	
exception	in	a	try statement.	

 The	try block contains	the	code	that	might	throw	an	
exception,	and	the	catch block contains	the	code	that	
handles the	exception	if	one	occurs.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



Executing	the	catch Block	
 Because	the	runtime	performs	array	bounds	checking,	it	
generates	an	exception—specifically	line	20	throws	an	
IndexOutOfRangeException to	notify	the	program	of	this	
problem.	

 At	this	point	the	try block	terminates	and	the	catch block	
begins	executing—if	you	declared	any	variables	in	the	try
block,	they	no	longer	exist,	so	they’re	not	accessible in	the	
catch block.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 The	catch block	declares	a	type	
(IndexOutOfRangeException)	and	an	exception	
parameter	(ex).	

 The	catch block	can	handle	exceptions	of	the	specified	
type.

 Inside	the	catch block,	you	can	use	the	parameter’s	
identifier	to	interact	with	a	caught	exception	object.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Message Property	of	the	Exception	Parameter	
When	lines	22–27	catch the	exception,	the	program	displays	
a	message	indicating	the	problem	that	occurred.	

 Line	24	uses	the	exception	object’s	Message property	to	
get	the	error	message	that's	stored	in	the	exception	object	
and	display	it.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



Class	Card	and	Getter‐Only	Auto‐Implemented	Properties	
 Class	Card (Fig. 8.10)	represents	a	playing	card	that	has	a	
face	and	a	suit.	

 Prior	to	C#	6,	auto‐implemented	properties	required	both	a	
get and	a	set accessor.	

 C#	6	getter‐only	auto‐implemented	properties	are	read	
only.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Class	Card	and	Getter‐Only	Auto‐Implemented	Properties	
 Getter‐only	auto‐implemented	properties	can	be	initialized	
only	either	in	their	declarations	or	in	all	of	the	type’s	
constructors.	

 Initializing	an	auto‐implemented	property	in	its	declaration	
is	another	C#	6	feature	known	as	auto‐property	initializers.
 Type PropertyName { get; set; } = initializer;

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



Class	DeckOfCards	
 Class	DeckOfCards (Fig. 8.11)	represents	a	deck	of	52	Card
objects.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Shuffling	and	Dealing	Cards	
 The	app	of	Fig. 8.12	demonstrates	the	card	dealing	and	
shuffling	capabilities	of	class	DeckOfCards.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 To	pass	an	array	argument	to	a	method,	specify	the	name	of	
the	array	without	any	brackets.	
Specifying	an	Array	Parameter
 For	a	method	to	receive	an	array	reference	through	a	method	
call,	the	method’s	parameter	list	must	specify	an	array	
parameter.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



Pass‐By‐Value	vs.	Pass‐By‐Reference
When	an	argument	to	a	method	is	an	entire	array	or	an	
individual	array	element	of	a	reference	type,	the	called	
method	receives	a	copy	of	the	reference.

When	an	argument	to	a	method	is	an	individual	array	
element	of	a	value	type,	the	called	method	receives	a	copy	of	
the	element’s	value.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



Passing	an	Entire	Array	vs.	Passing	a	Single	Array	
Element
 To	pass	an	individual	array	element	to	a	method,	use	the	indexed	
name	of	the	array	as	an	argument	in	the	method	call.

 Figure 8.13	demonstrates	the	difference	between	passing	an	entire	
array	and	passing	a	value‐type	array	element	to	a	method.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Storing	Student	Grades	in	an	Array	in	Class	GradeBook		
 Fig.	8.14	shows	the	output	of	a	program	that	tests	class	
GradeBook.

 Class	GradeBook (Fig. 8.15)	uses	an	array	of	integers	to	
store	the	grades	of	several	students	on	a	single	exam.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Class	GradeBookTest	That	Demonstrates	Class	
GradeBook		
 The	app	in	Fig. 8.16	demonstrates	class	GradeBook.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Two‐dimensional	arrays are	often	used	to	represent	
tables of	values consisting	of	information	arranged	in	rows
and	columns.

 To	identify	a	particular	table	element,	we	must	specify	two	
indices.	By	convention,	the	first	identifies	the	element’s	row	
and	the	second	its	column.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



Rectangular	Arrays
 In	rectangular	arrays,	each	row	has	the	same	number	of	
columns.

 Figure 8.17	illustrates	a	three‐by‐four	rectangular	array
named	a.

 An	array	with	m	rows	and	n	columns	is	called	an	m‐
by‐n array.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Array‐Access	Expression	for	a	Two‐Dimensional	Rectangular	Array
 Every	element	in	array	a is	identified	by	an	array‐access	expression	
of	the	form	a[row, column];

Array	Initializer	for	a	Two‐Dimensional	Rectangular	Array
 A	two‐by‐two	rectangular	array	b	can	be	declared	and	initialized	
with	nested	array	initializers as	follows:

int[,] b = {{1, 2}, {3, 4}};
 The	initializer	values	are	grouped	by	row	in	braces.

 The	compiler	will	generate	an	error	if	the	number	of	initializers	in	
each	row	is	not	the	same,	because	every	row	of	a	rectangular	array	
must	have	the	same	number	of	columns

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



Jagged	Arrays
• A	jagged	array is	a	one‐dimensional	array	whose	elements	
are	one‐dimensional	arrays.

• The	lengths	of	the	rows	in	the	array	need	not be	the	same.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



Array	Initializer	for	a	Two‐Dimensional	Jagged	Array
• Elements	in	a	jagged	array	are	accessed	using	an	array‐
access	expression	of	the	form	arrayName[row][column].

• A	jagged	array	with	three	rows	of	different	lengths	could	be	
declared	and	initialized	as	follows:
int[][] jagged = {new int[] {1, 2},

new int[] {3},
new int[] {4, 5, 6}};

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



• Figure 8.18 illustrates the array reference jagged after it
has been declared and initialized.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Creating	Two‐Dimensional	Arrays	with	Array‐Creation	Expressions
• A	rectangular	array	can	be	created	with	an	array‐creation	expression:

int[,] b;
b = new int[3, 4];

• A	jagged	array	cannot	be	completely	created	with	a	single	array‐
creation	expression.	Each	one‐dimensional	array	must	be	initialized	
separately.

• A	jagged	array	can	be	created	as	follows:
int[][] c;
c = new int[2][]; // create 2 rows
c[0] = new int[5]; // create 5 columns for row 0
c[1] = new int[3]; // create 3 columns for row 1

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



Two‐Dimensional	Array	Example:	Displaying	Element	
Values	
• Figure 8.19	demonstrates	initializing	rectangular	and	jagged	
arrays	with	array	initializers	and	using	nested	for loops	to	
traverse the	arrays.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Storing	Student	Grades	in	a	Rectangular	Array	in	Class	
GradeBook 
• Figure 8.20	shows	the	output	of	a	program	that	manipulates	
a	GradeBook (Fig.	8.21)	that	uses	a	rectangular	array	grades	
to	store	the	grades	of	a	number	of	students	on	multiple	
exams.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



Class	GradeBookTest That	Demonstrates	Class	GradeBook
• The	app	in	Fig. 8.22	demonstrates	class	GradeBook.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Variable‐length	argument	lists	allow	you	to	create	methods	
that	receive	an	arbitrary	number	of	arguments.

 The	necessary	paramsmodifier	can	occur	only	in	the	
parameter	list’s	last	parameter.	

 Figure 8.23	demonstrates	method	Average,	which	receives	
a	variable‐length	sequence	of	doubles.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



• You	can	pass	command‐line	arguments	to	an	app	by	including	a	
parameter	of	type	string[] in	the	parameter	list	of	Main.

• By	convention,	this	parameter	is	named	args.
• The	execution	environment	passes	the	command‐line	arguments	as	
an	array	to	the	app’s	Mainmethod.

• The	number	of	arguments	passed	from	the	command	line	is	obtained	
by	accessing	the	array’s	Length property.

• Command‐line	arguments	are	separated	by	whitespace,	not	commas.
• Figure 8.24	uses	three	command‐line	arguments	to	initialize	an	array.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Changes	to	the	local	copy	of	a	value‐type	argument	in	a	
called	method	do	not affect	the	original	variable	in	the	
caller.

 If	the	argument	is	of	a	reference type,	the	method	makes	a	
copy of	the	reference,	not	a	copy	of	the	actual	object	that's	
referenced.

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



 You	can	use	keyword	ref to	pass	a	reference‐type	variable	by	
reference,	which	allows	the	called	method	to	modify	the	original	
variable	in	the	caller	and	make	that	variable	refer	to	a	different	
object.

 This	is	a	subtle	capability,	which,	if	misused,	can	lead	to	problems.
 The	app	in	Fig. 8.25	demonstrates	the	subtle	difference	between	
passing	a	reference	by	value	and	passing	a	reference	by	reference	
with	keyword	ref.	

©1992‐2017 by Pearson Education, Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 8.6,	8.7,	8.14,	and	8.16	(pp.	355‐356	of	the	textbook)


