OOP: Polymorphism and Interfaces
Chapter 12 of Visual C# How to Program, 6/e

OBJECTIVES
In this chapter you'll:

m Understand how polymorphism enables you to “program in the general” and make systems
extensible.

m Use overridden methods to effect polymorphism.
m Create abstract classes and methods.

m Determine an object’s type at execution time with operator is, then use downcasting to perform
type-specific processing.

m Create sealed methods and classes.
m Declare and implement interfaces.

m Beintroduced to interfaces IComparable, IComponent, IDisposable and IEnumerator of
the .NET Framework Class Library.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.1 Introduction

12.2 Polymorphism Examples

12.3 Demonstrating Polymorphic Behavior

12.4 Abstract Classes and Methods

12.5 Case Study: Payroll System Using Polymorphism

[2:5:]
12.5.2
1253
12.54
1255
12.5.6
2557

Creating Abstract Base Class Employee

Creating Concrete Derived Class SalariedEmpTloyee

Creating Concrete Derived Class HourlyEmployee

Creating Concrete Derived Class CommissionEmployee

Creating Indirect Concrete Derived Class BasePTusCommissionEmployee
Polymorphic Processing, Operator is and Downcasting

Summary of the Allowed Assignments Between Base-Class and Derived-Class Variables

12.6 sealed Methods and Classes
12.7 Case Study: Creating and Using Interfaces

12.7.1
272
12.7.3
12.74
[2.7.5
12.7.6

Developing an IPayable Hierarchy

Declaring Interface IPayable

Creating Class Invoice

Modifying Class EmpToyee to Implement Interface IPayable

Using Interface IPayabTe to Process Invoices and Employees Polymorphically
Common Interfaces of the .NET Framework Class Library

12.8 Wrap-Up

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.1 Introduction

» Polymorphism enables you to write apps that process objects that
share the same base class in a class hierarchy as if they were all objects
of the base class.

» Polymorphism promotes extensibility.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.2 Polymorphism Examples

» If class Rectangle is derived from class Quadrilateral, then a
Rectangle is a more specific version of a Quadrilateral.

» Any operation that can be performed on a Quadrilateral object can
also be performed on a Rectangle object.

» These operations also can be performed on other Quadrilaterals,
such as Squares, Parallelograms and Trapezoides.

» The polymorphism occurs when an app invokes a method through a
base-class variable.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.2 Polymorphism Examples (Cont.)

» As another example, suppose we design a video game that manipulates
objects of many different types, including objects of classes Martian,
Venusian, Plutonian, SpaceShip and LaserBeam.

» Each class inherits from the common base class SpaceObject, which
contains method Draw.

» A screen-manager app maintains a collection (e.g., a SpaceObject
array) of references to objects of the various classes.

» To refresh the screen, the screen manager periodically sends each
object the same message—namely, Draw, while object responds in a
unique way.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

% Software Engineering Observation 12. 1
BE8X Polymorphism promotes extensibility: Software that
invokes polymorphic behavior is independent of the
object types to which messages are sent. New object types
that can respond to existing method calls can be
incorporated into a system without requiring
modification of the polymorphic system logic. Only client
code that instantiates new objects must be modified to

accommodate new types.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.3 Demonstrating Polymorphic Behavior

» In a method call on an object, the type of the actual referenced object,
not the type of the reference, determines which method is called.

» An object of a derived class can be treated as an object of its base class.
» A base-class object is not an object of any of its derived classes.

» The is-a relationship applies from a derived class to its direct and
indirect base classes, but not vice versa.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

’/‘\ Software Engineering Observation 12.2
XX The is-a relationship applies from a derived class to its
direct and indirect base classes, but not vice versa.

| ey

7

=y

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.3 Demonstrating Polymorphic Behavior
(Cont.)

» The compiler allows the assignment of a base-class reference to a

derived-class variable if we explicitly cast the base-class reference to
the derived-class type.

» If an app needs to perform a derived-class-specific operation on a
derived-class object referenced by a base-class variable, the app must
first cast the base-class reference to a derived-class reference through a
technique known as downcasting. This enables the app to invoke
derived-class methods that are not in the base class.

» Fig. 12.1 demonstrates three ways to use base-class and derived-class
variables.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

OCoOoO~NOOTUBNDE WN=

10
11
12
13
14
15
16
17

// Fig. 12.1: PolymorphismTest.cs

// Assigning base-class and derived-class references to base-class and
// derived-class variables.

using System;

class PolymorphismTest

{

static void Main()

{

// assign base-class reference to base-class variable
var commissionEmployee = new CommissionEmployee(
"Sue", "Jones", "222-22-2222", 10000.00M, .06M);

// assign derived-class reference to derived-class variable
var basePlusCommissionEmployee = new BasePlusCommissionEmployee(
"Bob", "Lewis", "333-33-3333", 5000.00M, .04M, 300.00M);

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part | of 5.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

18 // invoke ToString and Earnings on base-class object

19 // using base-class variable

20 Console.WritelLine(

21 "Call CommissionEmployee's ToString and Earnings methods " +
22 "with base-class reference to base class object\n");

23 Console.WriteLine(commissionEmployee.ToString());

24 Console.WriteLine($"earnings: {commissionEmployee.Earnings()}\n");
25

26 // invoke ToString and Earnings on derived-class object

27 // using derived-class variable

28 Console.WriteLine("Call BasePlusCommissionEmployee's ToString and” +
29 " Earnings methods with derived class reference to" +

30 " derived-class object\n");

31 Console.WriteLine(basePlusCommissionEmployee.ToString());

32 Console.WriteLine(

33 $"earnings: {basePlusCommissionEmployee.Earnings()}\n");

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part 2 of 5.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

34

35 // invoke ToString and Earnings on derived-class object

36 // using base-class variable

37 CommissionEmployee commissionEmployee2 = basePlusCommissionEmployee;
38 Console.WritelLine(

39 "Call BasePlusCommissionEmployee's ToString and Earnings " +
40 "methods with base class reference to derived-class object");
41 Console.WriteLine(commissionEmployee2.ToString());

42 Console.WritelLine(

43 $"earnings: {basePlusCommissionEmployee.Earnings()3}\n");

44 }

45 }

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part 3 of 5.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Call CommissionEmployee's ToString and Earnings methods with base class
reference to base class object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: $10,000.00

commission rate: 0.06

earnings: $600.00

Call BasePlusCommissionEmployee's ToString and Earnings methods with derived
class reference to derived class object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: $5,000.00

commission rate: 0.04

base salary: $300.00

earnings: $500.00

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part 4 of 5.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Call BasePlusCommissionEmployee's ToString and Earnings methods with base
class reference to derived class object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: $5,000.00

commission rate: 0.04

base salary: $300.00

earnings: $500.00

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part 5 of 5.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.3 Demonstrating Polymorphic Behavior
(Cont.)

» When the compiler encounters a virtual method call made through a
variable, the compiler checks the variable’s class type to determines if
the method can be called.

» At execution time, the type of the object to which the variable refers
determines the actual method to use.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

NEZ Software Engineering Observation 12.3

86X A base-class variable that contains a reference to a

d?‘an‘ i"“‘f

derived-class object and is used to call a virtual
method actually calls the overriding derived-class version

of the method.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.4 Abstract Classes and Methods

» Abstract classes, or abstract base classes cannot be used to instantiate
objects.

» Abstract base classes are too general to create real objects—they
specify only what is common among derived classes.

» Classes that can be used to instantiate objects are called concrete
classes.

» Concrete classes provide the specifics that make it reasonable to
instantiate objects.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.4 Abstract Classes and Methods (Cont.)

» An abstract class normally contains one or more abstract methods,
which have the keyword abstract in their declaration.

» A class that contains abstract methods must be declared as an
abstract class even if it contains concrete (non-abstract) methods.

» Abstract methods do not provide implementations.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.4 Abstract Classes and Methods (Cont.)

» Abstract property declarations have the form:
= public abstract PropertyType MyProperty { get; set; }

» An abstract property omits implementations for the get accessor
and/or the set accessor.

» Concrete derived classes must provide implementations for every
accessor declared in the abstract property.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.4 Abstract Classes and Methods (Cont.)

» Constructors and static methods cannot be declared abstract or
virtual

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

]

«» Software Engineering Observation 12.4
8 An abstract class declares common attributes and

behaviors of the various classes that inberit from it, either
directly or indirectly, in a class hierarchy. An abstract
class typically contains one or more abstract methods or
properties that concrete derived classes must override.
The instance variables, concrete methods and concrete
properties of an abstract class are subject to the normal
rules of inheritance.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

nag Common Programming Error 12. 1
CE| Attempting to instantiate an object of an abstract class is
a compilation error.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

52 Common Programming Error 12.2

Al Failure to implement a base class’s abstract methods and
properties in a derived class is a compilation error unless
the derived class is also declared abstract.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.4 Abstract Classes and Methods (Cont.)

» We can use abstract base classes to declare variables that can hold

references to objects of any concrete classes derived from those
abstract classes.

» You can use such variables to manipulate derived-class objects
polymorphically and to invoke static methods declared in those
abstract base classes.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.5 Case Study: Payroll System Using
Polymorphism

» A company pays its employees on a weekly basis. The employees are of four
types:

= Salaried employees are paid a fixed weekly salary regardless of the number of hours worked,

= hourly employees are paid by the hour and receive "time-and-a-half" overtime pay for all
hours worked in excess of 40 hours,

= commission employees are paid a percentage of their sales, and

= salaried-commission employees receive a base salary plus a percentage of their sales.

» For the current pay period, the company has decided to reward salaried-
commission employees by adding 10% to their base salaries. The company
wants to implement an app that performs its payroll calculations

polymorphically.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.5 Case Study: Payroll System Using
Polymorphism (Cont.)

» We use abstract class Employee to represent the general concept of
an employee.

» SalariedEmployee, CommissionEmployee and HourlyEmployee
extend Employee.

» Class BasePlusCommissionEmployee—which extends
CommissionEmployee—represents the last employee type.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.5 Case Study: Payroll System Using
Polymorphism (Cont.)

» The UML class diagram in Fig. 12.2 shows the inheritance hierarchy for
our polymorphic employee payroll app.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

Employee

SalariedEmployee I CommissionEmployee HourlyEmployee I
BasePlusCommissionEmployee I

Fig. 12.2 | Employee hierarchy UML class diagram.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.5.1 Creating Abstract Base Class Employee

» Class Employee provides methods Earnings and ToString, in
addition to the properties that manipulate Employee’s instance
variables.

» Each earnings calculation depends on the employee’s class, so we
declare Earnings as abstract.

» The app iterates through the array and calls method Earnings for each
Employee object. These method calls are processed polymorphically.

» Each derived class overrides method ToString to create a string
representation of an object of that class.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.5 Case Study: Payroll System Using
Polymorphism (Cont.)

» The diagram in Fig. 12.3 shows each of the five classes in the hierarchy
down the left side and methods Earnings and ToString across the
top.

» The Employee class’s declaration is shown in Fig. 12.4.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

Earnings ToString

Employee

Salaried-
Employee

Hourly-
Employee

Commission-
Employee

BasePlus-
Commission-
Employee

Fig. 12.3 | Polymorphic interface for the Employee hierarchy classes.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 12.4: Employee.cs

2 // Employee abstract base class.

3 public abstract class Employee

4 {

5 public string FirstName { get; }

6 public string LastName { get; }

7 public string SocialSecurityNumber { get; }

8

9 // three-parameter constructor

10 public Employee(string firstName, string lastName,

11 string socialSecurityNumber)

12 {

13 FirstName = firstName;

14 LastName = lastName;

15 SocialSecurityNumber = socialSecurityNumber;

16 }

17

8 // return string representation of Employee object, using properties
19 public override string ToString() => $"{FirstName} {LastName}\n" +
20 $"social security number: {SocialSecurityNumber}";
21
22 // abstract method overridden by derived classes
23 public abstract decimal Earnings(); // no implementation here
24 1}

Fig. 12.4 | Employee abstract base class.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.5.2 Creating Concrete Derived Class
SalariedEmployee

» The SalariedEmployee class’s declaration is shown in Fig. 12.5.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

OCoO~NOTUKNDE WN -

10
I
12
13
14
15
16

// Fig. 12.5: SalariedEmployee.cs
// SalariedEmployee class that extends Employee.
using System;

public class SalariedEmployee : Employee

{

private decimal weeklySalary;

// four-parameter constructor
public SalariedEmployee(string firstName, string lastName,
string socialSecurityNumber, decimal weeklySalary)
base(firstName, lastName, socialSecurityNumber)

WeeklySalary = weeklySalary; // validate salary

Fig. 12.5 | SalariedEmployee class that extends EmpTloyee. (Part | of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

17
I8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

// property that gets and sets salaried employee's salary

public decimal WeeklySalary

{
get
{
return weeklySalary;
}
set
{
if (value < 0) // validation
{
throw new ArgumentOutOfRangeException(nameof(value),
value, $"{nameof(WeeklySalary)} must be >= 0");
}
weeklySalary = value;
}
}

Fig. 12.5 | SalariedEmployee class that extends Employee. (Part 2 of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

35

36 // calculate earnings; override abstract method Earnings in Employee
37 public override decimal Earnings() => WeeklySalary;

38

39 // return string representation of SalariedEmployee object

40 public override string ToString() =>

41 $"salaried employee: {base.ToString()}\n" +

42 $"weekly salary: {WeeklySalary:C}";

43 }

Fig. 12.5 | SalariedEmployee class that extends Employee. (Part 3 of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.5.3 Creating Concrete Derived Class
HourlyEmployee

» The HourlyEmployee class’s declaration is shown in Fig. 12.6.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

i / Fig. 12.6: HourlyEmployee.cs

2 // HourlyEmployee class that extends Employee.

3 using System;

4

5 public class HourlyEmployee : Employee

6 {

7 private decimal wage; // wage per hour

8 private decimal hours; // hours worked for the week
9

10 // five-parameter constructor

1 public HourlyEmployee(string firstName, string lastName,
12 string socialSecurityNumber, decimal hourlyWage,
13 decimal hoursWorked)

14 : base(firstName, lTastName, socialSecurityNumber)
15 {

16 Wage = hourlyWage; // validate hourly wage

17 Hours = hoursWorked; // validate hours worked

I8 }

19

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part | of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

20 // property that gets and sets hourly employee's wage
21 public decimal Wage

22 {

23 get

24 {

25 return wage;

26 }

27 set

28 {

29 if (value < 0) // validation

30 {

31 throw new ArgumentOutOfRangeException(nameof(value),
32 value, $"{nameof(Wage)} must be >= 0");
33 }

34

35 wage = value;

36 }

37 }

38

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 2 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

39 // property that gets and sets hourly employee's hours

40 public decimal Hours

41 {

42 get

43 {

44 return hours;

45 }

46 set

47 {

48 if (value < 0 || value > 168) // validation

49 {

50 throw new ArgumentOutOfRangeException(nameof(value),
51 value, $"{nameof(Hours)} must be >= 0 and <= 168");
52 }

53

54 hours = value;

55 }

56 }

57

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 3 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

58 // calculate earnings; override Employee’s abstract method Earnings

59 public override decimal Earnings()

60 {

61 if (Hours <= 40) // no overtime

62 {

63 return Wage * Hours;

64 3

65 else

66 {

67 return (40 * Wage) + ((Hours - 40) * Wage * 1.5M);
68 }

69 }

70

71 // return string representation of HourlyEmployee object
72 public override string ToString() =>

73 $"hourly employee: {base.ToString(Q}\n" +

74 $"hourly wage: {Wage:C}\nhours worked: {Hours:F2}";
75 1}

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 4 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.5.4 Creating Concrete Derived Class
CommissionEmployee

» The CommissionEmployee class’s declaration is shown in Fig. 12.7.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

i // Fig. 12.7: CommissionEmployee.cs
2 // CommissionEmployee class that extends Employee.
3 using System;
4
5 public class CommissionEmployee : Employee
6 {
7 private decimal grossSales; // gross weekly sales
8 private decimal commissionRate; // commission percentage
9
10 // five-parameter constructor
1 public CommissionEmployee(string firstName, string lastName,
12 string socialSecurityNumber, decimal grossSales,
13 decimal commissionRate)
14 : base(firstName, lastName, socialSecurityNumber)
15 {
16 GrossSales = grossSales; // validates gross sales
17 CommissionRate = commissionRate; // validates commission rate
18 }
19

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part | of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

20 // property that gets and sets commission employee's gross sales
21 public decimal GrossSales

22 {

23 get

24 {

25 return grossSales;

26 }

27 set

28 {

29 if (value < 0) // validation

30 {

31 throw new ArgumentOutOfRangeException(nameof(value),
32 value, $"{nameof(GrossSales)} must be >= 0");

33 }

34

35 grossSales = value;

36 }

37 }

38

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part 2 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

// property that gets and sets commission employee's commission rate
public decimal CommissionRate

{
get
{
return commissionRate;
}
set
{
if (value <= 0 || value >= 1) // validation
{
throw new ArgumentOutOfRangeException(nameof(value),
value, $"{nameof(CommissionRate)} must be > 0 and < 1");
}
commissionRate = value;
}
3

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part 3 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

58
59
60
6l
62
63
64
65
66

// calculate earnings; override abstract method Earnings in Employee
public override decimal Earnings() => CommissionRate * GrossSales;

// return string representation of CommissionEmployee object
public override string ToString() =>

$"commission employee: {base.ToString()}\n" +

$"gross sales: {GrossSales:C}\n" +

$"commission rate: {CommissionRate:F2}";

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part 4 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.5.5 Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee

» Class BasePlusCommissionEmployee (Fig. 12.8) extends class
CommissionEmployee and therefore is an indirect derived class of
class Employee.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

OCoO~NOTUNHE WN =

10
11
12
13
14
15
16
17
18

r 4

£y

Fig. 12.8: BasePlusCommissionEmployee.cs

~N

BasePlusCommissionEmployee class that extends CommissionEmployee.

using System;

public class BasePlusCommissionEmployee : CommissionEmployee

{

private decimal baseSalary; // base salary per week

Fe Sﬁx~param@ler constructor
public BasePlusCommissionEmployee(string firstName, string lastName,
string socialSecurityNumber, decimal grossSales,
decimal commissionRate, decimal baseSalary)
: base(firstName, lastName, socialSecurityNumber,
grossSales, commissionRate)

BaseSalary = baseSalary; // validates base salary

Fig. 12.8 | BasePlusCommissionEmployee class that extends CommissionEmployee. (Part |

of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

19 // property that gets and sets

20 // BasePlusCommissionEmployee's base salary

21 public decimal BaseSalary

22 {

23 get

24 {

25 return baseSalary;

26 }

27 set

28 {

29 if (value < 0) // validation

30 {

k]| throw new ArgumentOutOfRangeException(nameof(value),
32 value, $"{nameof(BaseSalary)} must be >= 0");
33 }

34

35 baseSalary = value;

36 }

37 }

38

Fig. 12.8 | BasePlusCommissionEmployee class that extends CommissionEmployee. (Part 2
of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

39
40
41
42
43
44
45

¥

// calculate earnings
public override decimal Earnings() => BaseSalary + base.Earnings();

// return string representation of BasePlusCommissionEmployee
public override string ToString() =>
$"base-salaried {base.ToString()}\nbase salary: {BaseSalary:C}";

Fig. 12.8 | BasePlusCommissionEmpTloyee class that extends CommissionEmployee. (Part 3

of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.5.6 Polymorphic Processing, Operator is and
Downcasting
» The app in Fig. 12.9 tests our Employee hierarchy.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

1 // Fig. 12.9: PayrollSystemTest.cs

2 // Employee hierarchy test app.

3 using System;

4 using System.Collections.Generic;

5

6 class PayrollSystemTest

7 {

8 static void Main()

9 {
10 // create derived-class objects
11 var salariedEmployee = new SalariedEmployee("John", "Smith",
12 "111-11-1111", 800.00M);
13 var hourlyEmployee = new HourlyEmployee("Karen", "Price",
14 "222-22-2222", 16.75M, 40.0M);
15 var commissionEmployee = new CommissionEmployee("Sue”, "Jones",
16 "333-33-3333", 10000.00M, .06M);
17 var basePlusCommissionEmployee =
18 new BasePlusCommissionEmployee("Bob", "Lewis",
19 "444-44-4444", 5000.00M, .04M, 300.00M);

Fig. 12.9 | Employee hierarchy test app. (Part | of 7.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

20

21 Console.WriteLine("Employees processed individually:\n");

22

23 Console.WriteLine($"{salariedEmployee}\nearned: " +

24 $"{salariedEmployee.Earnings():C}\n");

25 Console.WritelLine(

26 $"{hourlyEmployee}\nearned: {hourlyEmployee.Earnings():C}\n");
27 Console.WriteLine($"{commissionEmployee}\nearned: " +

28 $"{commissionEmployee.Earnings() :C}\n");

29 Console.WriteLine($" {basePTusCommissionEmployee}\nearned: " +

30 $"{basePTusCommissionEmployee.Earnings():C}\n");

31

32 // create List<Employee> and initialize with employee objects

33 var employees = new List<Employee>() {salariedEmployee,

34 hourlyEmployee, commissionEmployee, basePlusCommissionEmployee};
35

Fig. 12.9 | Employee hierarchy test app. (Part 2 of 7.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

36 Console.WriteLine("Employees processed polymorphically:\n");
37

38 // generically process each element in employees

39 foreach (var currentEmployee in employees)

40 {

41 Console.WriteLine(currentEmployee); // invokes ToString

42

43 // determine whether element is a BasePlusCommissionEmployee
44 if (currentEmployee is BasePlusCommissionEmployee)

45 {

46 // downcast Employee reference to

47 // BasePlusCommissionEmployee reference

48 var employee = (BasePlusCommissionEmployee) currentEmployee;
49

50 employee.BaseSalary *= 1.10M;

51 Console.WriteLine("new base salary with 10% increase is: " +
52 $"{employee.BaseSalary:C}");

53 }

54

55 Console.WriteLine($"earned: {currentEmployee.Earnings():C}\n");
56 }

Fig. 12.9 | Employee hierarchy test app. (Part 3 of 7.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

57

58 // get type name of each object in employees

59 for (int j = 0; j < employees.Count; j++)

60 {

61 Console.WriteLine(

62 $"Employee {j} is a {employees[j].GetType()}");
63 }

64 }

65 }

Fig. 12.9 | Employee hierarchy test app. (Part 4 of 7.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned: $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75

hours worked: 40.00

earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00

commission rate: 0.06

earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

gross sales: $5,000.00

commission rate: 0.04

base salary: $300.00

earned: $500.00

Fig. 12.9 | Employee hierarchy test app. (Part 5 of 7.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned: $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75

hours worked: 40.00

earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00

commission rate: 0.06

earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

gross sales: $5,000.00

commission rate: 0.04

base salary: $300.00

new base salary with 10% increase is: $330.00
earned: $530.00

Fig. 12.9 | Employee hierarchy test app. (Part 6 of 7.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Employee
Employee
Employee
Employee

WKN RO

is
jiis
is
is

(SIS D b

SalariedEmployee
HourlyEmployee
CommissionEmployee
BasePlusCommissionEmployee

Fig. 12.9 | Employee hierarchy test app. (Part 7 of 7.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

a3e» Common Programming Error 12.3
Assigning a base-class variable to a derived-class variable
(without an explicit downcast) is a compilation error.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

7 Software Engineering Observation 12.5

., [f at execution time the reference to a derived-class object

has been assigned to a variable of one of its direct or
indirect base classes, it’s acceptable to cast the reference
stored in that base-class variable back to a reference of
the derived-class type. Before performing such a cast, use
the 1S operator to ensure that the object is indeed an
object of an appropriate derived-class type.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.5.6 Polymorphic Processing, Operator is and

Downcasting (Cont.)

» You can avoid a potential InvalidCastException by using the as

operator to perform a downcast rather than a cast operator.
= If the downcast is invalid, the expression will be null instead of throwing an

exception.

» Method GetType returns an object of class Type
(of namespace System), which contains information about the object’s

type, including its class name, the names of its methods, and the name

of its base class.
» The Type class’s ToString method returns the class name.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.5.7 Summary of the Allowed Assignments
Between Base-Class and Derived-Class Variables

- Assigning a base-class reference to a base-class variable is straightforward.

- Assigning a derived-class reference to a derived-class variable is straightfor-
ward.

- Assigning a derived-class reference to a base-class variable is safe, because the
derived-class object is an object of its base class. However, this reference can be
used to refer only to base-class members.

- Attempting to assign a base-class reference to a derived-class variable is a
compilation error. To avoid this error, the base-class reference must be cast to a
derived-class type explicitly.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.6 sealed Methods and Classes

» A method declared sealed in a base class cannot be overridden in a
derived class.

» Methods that are declared private are implicitly sealed.
» Methods that are declared static also are implicitly sealed, because
static methods cannot be overridden either.

» A derived-class method declared both override and sealed can
override a base-class method, but cannot be overridden in classes
further down the inheritance hierarchy.

» Calls to sealed methods (and non-virtual methods) are resolved at
compile time—this is known as static binding.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

<&5. Performance Tip 12.1

ZZT The compiler can decide to inline a sealed method call
and will do so for small, simple sealed methods. Inlin-
ing does not violate encapsulation or information hiding,

but does improve performance, because it eliminates the

overhead of making a method call.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.6 sealed Methods and Classes (Cont.)

» A class that is declared sealed cannot be a base class (i.e., a class
cannot extend a sealed class).

» All methods in a sealed class are implicitly sealed.

» Class string is a sealed class. This class cannot be extended, so apps
that use strings can rely on the functionality of string objects as
specified in the Framework Class Library.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

o2 Common Programming Error 12.4
£ Attempting to declare a derived class of a sealed class is
a compilation error.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7 Case Study: Creating and Using Interfaces

» Interfaces define and standardize the ways in which people and
systems can interact with one another.

» A C# interface describes a set of methods that can be called on an
object—to tell it, for example, to perform some task or return some
piece of information.

» An interface declaration begins with the keyword interface and can
contain only abstract methods, abstract properties, abstract
indexers and abstract events

» All interface members are implicitly declared public and abstract.

» An interface can extend one or more other interfaces to create a more

elaborate interface that other classes can implement.
©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

Common Programming Error 12.5

It’s a compilation error to explicitly declare an interface
member pub1ic or abstract, because they re redun-
dant in interface-member declarations. It's also a compi-
lation error to specify in an interface any
implementation details, such as concrete method declara-
tions.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7 Case Study: Creating and Using Interfaces
(Cont.)

» To use an interface, a class must specify that it implements the
interface by listing the interface after the colon (:) in the class
declaration.

» A concrete class implementing an interface must declare each member
of the interface with the signature specified in the interface declaration.

» A class that implements an interface but does not implement all its
members is an abstract class—it must be declared abstract and must
contain an abstract declaration for each unimplemented member of
the interface.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

s Common Programming Error 12.6
£ Failing to define or declare any member of an interface
in a class that implements the interface results in a com-
pilation error.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7 Case Study: Creating and Using Interfaces
(Cont.)

» An interface is typically used when unrelated classes need to share
common methods so that they can be processed polymorphically

» You can create an interface that describes the desired functionality,
then implement this interface in any classes requiring that
functionality.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.7 Case Study: Creating and Using Interfaces
(Cont.)

» An interface often is used in place of an abstract class when there is
no default implementation to inherit—that is, no fields and no default
method implementations.

» Like abstract classes, interfaces are typically public types, so they are
normally declared in files by themselves with the same name as the
interface and the . cs file-name extension.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.7.1 Developing an IPayable Hierarchy

- To build an app that can determine payments for employees and
invoices alike, we first create an interface named IPayable.

- Interface IPayable contains method GetPaymentAmount that
returns a decimal amount to be paid for an object of any class that
implements the interface.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

ol Good Programming Practice 12.1

‘ & | By convention, the name of an interface begins with T
(e.g., IPayable). This helps distinguish interfaces from
classes, improving code readability.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Mgy Good Programming Practice 12.2

Q.:_n‘ When declaring a method in an interface, choose a name
that describes the method’s purpose in a general manner,
because the method may be implemented by a broad
range of unrelated classes.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7.1 Developing an IPayable Hierarchy (Cont.)

UML Diagram Containing an Interface

» The UML class diagram in Fig. 12.10 shows the interface and class
hierarchy used in our accounts-payable app.

» The UML distinguishes an interface from a class by placing the word
“interface” in guillemets (« and ») above the interface name.

» The UML expresses the relationship between a class and an interface
through a realization.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

«interface»
IPayable

Invoice I Employee

SalariedEmployee

L

Fig. 12.10 | IPayableinterface and class hierarchy UML class diagram.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7.2 Declaring Interface IPayable

» Interface IPayable is declared in Fig. 12.11.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

| // Fig. 12.11: IPayable.cs

2 // IPayable interface declaration.

3 public interface IPayable

4 {

5 decimal GetPaymentAmount(); // calculate payment; no implementation
6 }

Fig. 12.11 | IPayable interface declaration.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7.3 Creating Class Invoice

» Class Invoice (Fig. 12.12) represents a simple invoice that contains
billing information for one kind of part.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

| // Fig. 12.12: Invoice.cs

2 / Invoice class implements IPayable.

3 using System;

4

5 public class Invoice : IPayable

6 {

7 public string PartNumber { get; }

8 public string PartDescription { get; }

9 private int quantity;

10 private decimal pricePerltem;

11

12 // four-parameter constructor

13 public Invoice(string partNumber, string partDescription, int quantity,
14 decimal pricePerItem)

15 {

16 PartNumber = partNumber;

17 PartDescription = partDescription;

I8 Quantity = quantity; // validate quantity
19 PricePerItem = pricePerltem; // validate price per item
20 }
21

Fig. 12.12 | Invoice classimplements IPayable. (Part | of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

22 // property that gets and sets the quantity on the invoice
23 public int Quantity

24 {

25 get

26 {

27 return quantity;

28 }

29 set

30 {

31 if (value < 0) // validation

32 {

33 throw new ArgumentOutOfRangeException(nameof(value),
34 value, $"{nameof(Quantity)} must be >= 0");

35 }

36

37 quantity = value;

38 }

39 }

40

Fig. 12.12 | Invoice classimplements IPayable. (Part 2 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

// property that gets and sets the price per 1item
public decimal PricePerItem

{
get
{
return pricePerltem;
}
set
{
if (value < 0) // validation
{
throw new ArgumentOutOfRangeException(nameof(value),
value, $"{nameof(PricePerItem)} must be >= 0");
}
pricePerItem = value;
}
}

Fig. 12.12 | Invoice classimplements IPayable. (Part3 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

59

60 // return string representation of Invoice object

61 public override string ToString() =>

62 $"invoice:\npart number: {PartNumber} ({PartDescription})\n" +
63 $"quantity: {Quantity}\nprice per item: {PricePerItem:C}";

64

65 // method required to carry out contract with interface IPayable
66 public decimal GetPaymentAmount() => Quantity * PricePerItem;

67 }

Fig. 12.12 | Invoice class implements IPayable. (Part 4 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

’, Software Engineering Observation 12.6

BE8X C# does not allow derived classes to inherit from more
than one base class, but it does allow a class to inherit
from a base class and implement any number of
interfaces.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7.3 Creating Class Invoice (Cont.)

» C# does not allow derived classes to inherit from more than one base
class, but it does allow a class to implement any number of interfaces.

» To implement more than one interface, use a comma-separated list of
interface names after the colon (:) in the class declaration.

» When a class inherits from a base class and implements one or more
interfaces, the class declaration must list the base-class name before
any interface names.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

12.7.4 Modifying Class Employee to Implement
Interface IPayable

» Figure 12.13 contains the Employee class, modified to implement
interface IPayable.

» Notice that GetPaymentAmount simply calls Employee’s abstract
method Earnings.

» At execution time, when GetPaymentAmount is called on an object of
an Employee derived class, GetPaymentAmount calls that class’s
concrete Earnings method, which knows how to calculate earnings for
objects of that derived-class type.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

F1g;: 12.13: oloyee.cs
// Employee abstract base class that implements interface IPayabl
public abstract class Emp1oyee : IPayable

{
public string FirstName { get; }

public string LastName { get; }
public string SocialSecurityNumber { get; }

/ three-parameter constructor

i) & Ewnin 1 s rimn g il pd=s -.. Al e lhee I | s e g prot TS P R (SRS Y e
I 1C EmpluyEEkbL lg] lrbLNdme SLIINGg 145 LNdIle,
string socialSecurityNumber)

FirstName = firstName;
LastName = lastName;
SocialSecurityNumber = socialSecurityNumber;

=S UNHh WN=Q OO~ UIWN=
e
, =

Fig. 12.13 | Employee abstract base class that implements interface IPayable. (Part | of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

18
19
20
21
22
23
24
25
26
27
28

// return string representation of Employee object, using properties
public override string ToString() => $"{FirstName} {LastName}\n" +
$"social security number: {SocialSecurityNumber}";

// abstract method overridden by derived classes
public abstract decimal Earnings(); // no implementation here

// implementing GetPaymentAmount here enables the entire Employee
// class hierarchy to be used in an app that processes IPayables
public decimal GetPaymentAmount() => Earnings();

Fig. 12.13 | Employee abstract base class that implements interface IPayable. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7.5 Moditying Class SalariedEmployee for Use
with IPayable

» When a class implements an interface, the same is-a relationship as
inheritance applies.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

sz Software Engineering Observation 12.7

e’

Iy

BE8X Inheritance and interfaces are similar in their

implementation of the is-a relationship. An object of a
class that implements an interface may be thought of as
an object of that interface type. An object of any derived
classes of a class that implements an interface also can be
thought of as an object of the interface type.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

® Theis-a relationship that exists between base classes and
derived classes, and between interfaces and the classes
that implement them, holds when passing an object to a
method. When a method parameter receives an
argument of a base class or interface type, the method

polymorphically processes the object received as an
argument.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7.6 Using Interface [Payable to Process
Invoices and Employees Polymorphically

» PayableInterfaceTest (Fig. 12.14) illustrates that interface
IPayable can be used to processes a set of Invoices and Employees
polymorphically in a single app.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

g Software Engineering Observation 12.9

4, ® A/l methods of class object can be called by using a
reference of an interface type—the reference refers to an
object, and all objects inbherit the methods of class
object.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

// Fig. 12.14: PayablelnterfaceTest.cs

// Tests interface IPayable with disparate classes.
using System;

using System.Collections.Generic;

class PayablelnterfaceTest

{

static void Main(Q)

{

AAAAAAA - am e (- e - el

// create a List<IPayable> and initialize it wit 0
// objects of classes that implement interface IPayable
var payableObjects = new List<IPayable>() {
new Invoice("01234", "seat", 2, 375.00M),
hew Invoice("56789", "tire", 4, 79.95M),
new SalariedEmployee("John", "Smith", "111-11-1111", 800.00M),
hew SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00M)};

L. Lo...a
rn 1o0ul

NN WN=0OVOOO~NOOTUBEWN=

Fig. 12.14 | Tests interface IPayable with disparate classes. (Part | of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

I8 Console.WriteLine(

19 "Invoices and Employees processed polymorphically:\n");
20

21 // generically process each element in payableObjects
22 foreach (var payable in payableObjects)

23 {

24 // output payable and its appropriate payment amount
25 Console.WriteLine($" {payable}");

26 Console.WritelLine(

27 $"payment due: {payable.GetPaymentAmount():C}\n");
28 }

29 }

30 }

Fig. 12.14 | Tests interface IPayable with disparate classes. (Part 2 of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
guantity: 2

price per item: $375.00
payment due: $750.00

invoice:
part number: 56789 (tire)
guantity: 4

price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00

payment due: $1,200.00

Fig. 12.14 | Tests interface IPayable with disparate classes. (Part 3 of 3.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

12.7.7 Common Interfaces of the .NET Framework
Class Library

» Figure 12.15 overviews several commonly used Framework Class
Library interfaces.

©1992-2017 by Pearson Education,
Inc. All Rights Reserved.

IComparable C# contains several comparison operators (e.g., <, <=, >, >=, ==, !=)
that allow you to compare simple-type values. Section 10.13 showed
that you can overload these operators for your own types. Interface
IComparable can be used to allow objects of a class that imple-
ments the interface to be compared to one another. The interface
contains one method, CompareTo, which compares the object that
calls the method to the object passed as an argument. Classes must
implement CompareTo to return a value indicating whether the
object on which it’s invoked is less than (negative integer return
value), equal to (0 return value) or greater than (positive integer
return value) the object passed as an argument, using any criteria
you specify. For example, if class EmpTloyee implements ICompara-
ble, its CompareTo method could compare Employee objects by
their earnings amounts. Interface IComparabTle is commonly used
for ordering objects in a collection such as an array. We use ICompa-
rable in Chapter 20, Generics, and Chapter 21, Generic Collec-
tions; Functional Programming with LINQ/PLINQ.

Fig. 12.15 | Common interfaces of the .NET Framework Class Library. (Part | of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

IComponent Implemented by any class that represents a component, including
Graphical User Interface (GUI) controls (such as buttons or labels).
Interface IComponent defines the behaviors that components must
implement. We discuss IComponent and many GUI controls that
implement this interface in Chapter 14, Graphical User Interfaces
with Windows Forms: Part 1, and Chapter 15, Graphical User

Interfaces with Windows Forms: Part 2.

Fig. 12.15 | Common interfaces of the .NET Framework Class Library. (Part 2 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

IDisposable Implemented by classes that must provide an explicit mechanism for
releasing resources. Some resources can be used by only one program
at a time. In addition, some resources, such as files on disk, are
unmanaged resources that, unlike memory, cannot be released by
the garbage collector. Classes that implement interface IDispos-
able provide a Dispose method that can be called to explicitly
release resources that are explicitly associated with an object. We dis-
cuss IDisposable briefly in Chapter 13, Exception Handling:

A Deeper Look. You can learn more about this interface at http://
msdn.microsoft.com/1ibrary/system.idisposable. The
MSDN article Implementing a Dispose Method at http://
msdn.microsoft.com/Tibrary/fs2xkftw discusses the proper
implementation of this interface in your classes.

Fig. 12.15 | Common interfaces of the .NET Framework Class Library. (Part 3 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

IEnumerator Used for iterating through the elements of a collection (such as an
array or a List) one element at a time—the foreach statement
uses an IEnumerator object to iterate through elements. Interface
IEnumerator contains method MoveNext to move to the next ele-
ment in a collection, method Reset to move to the position before
the first element and property Current to return the object at the
current location. We use IEnumerator in Chapter 21. All IEnum-
berable objects (Chapter 9) provide a GetEnumerator method
that returns an IEnumerator object.

Fig. 12.15 | Common interfaces of the .NET Framework Class Library. (Part 4 of 4.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

Exercises

» 12.7,12.8,and 12.11 (pp. 505-506 of the textbook)

