
Chapter	12	of	Visual	C#	How	to	Program,	6/e

©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Polymorphism enables	you	to	write	apps	that	process	objects	that	
share	the	same	base	class	in	a	class	hierarchy	as	if	they	were	all	objects	
of	the	base	class.

 Polymorphism	promotes	extensibility.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 If	class	Rectangle is	derived	from	class	Quadrilateral,	then	a	
Rectangle is	a	more	specific	version	of	a	Quadrilateral.

 Any	operation	that	can	be	performed	on	a	Quadrilateral object	can	
also	be	performed	on	a	Rectangle object.

 These	operations	also	can	be	performed	on	other	Quadrilaterals,	
such	as	Squares,	Parallelograms	and	Trapezoids.

 The	polymorphism	occurs	when	an	app	invokes	a	method	through	a	
base‐class	variable.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 As	another	example,	suppose	we	design	a	video	game	that	manipulates	
objects	of	many	different	types,	including	objects	of	classes	Martian,	
Venusian,	Plutonian,	SpaceShip and	LaserBeam.

 Each	class	inherits	from	the	common	base	class	SpaceObject,	which	
contains	method	Draw.

 A	screen‐manager	app	maintains	a	collection	(e.g.,	a	SpaceObject
array)	of	references	to	objects	of	the	various	classes.	

 To	refresh	the	screen,	the	screen	manager	periodically	sends	each	
object	the	same	message—namely,	Draw,	while	object	responds	in	a	
unique	way.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 In	a	method	call	on	an	object,	the	type	of	the	actual	referenced	object,	
not	the	type	of	the	reference,	determines	which	method	is	called.

 An	object	of	a	derived	class	can	be	treated	as	an	object	of	its	base	class.
 A	base‐class	object	is	not	an	object	of	any	of	its	derived	classes.
 The	is‐a relationship	applies	from	a	derived	class	to	its	direct	and	
indirect	base	classes,	but	not	vice	versa.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 The	compiler	allows	the	assignment	of	a	base‐class	reference	to	a	
derived‐class	variable	if	we	explicitly	cast	the	base‐class	reference	to	
the	derived‐class	type.

 If	an	app	needs	to	perform	a	derived‐class‐specific	operation	on	a	
derived‐class	object	referenced	by	a	base‐class	variable,	the	app	must	
first	cast	the	base‐class	reference	to	a	derived‐class	reference	through	a	
technique	known	as	downcasting.	This	enables	the	app	to	invoke	
derived‐class	methods	that	are	not	in	the	base	class.	

 Fig. 12.1	demonstrates	three	ways	to	use	base‐class	and	derived‐class	
variables.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 When	the	compiler	encounters	a	virtualmethod	call	made	through	a	
variable,	the	compiler	checks	the	variable’s	class	type	to	determines	if	
the	method	can	be	called.

 At	execution	time,	the	type	of	the	object	to	which	the	variable	refers	
determines	the	actual	method	to	use.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Abstract	classes,	or		abstract	base	classes	cannot	be	used	to	instantiate	
objects.

 Abstract	base	classes	are	too	general	to	create	real	objects—they	
specify	only	what	is	common	among	derived	classes.

 Classes	that	can	be	used	to	instantiate	objects	are	called	concrete	
classes.	

 Concrete	classes	provide	the	specifics	that	make	it	reasonable	to	
instantiate	objects.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 An	abstract class	normally	contains	one	or	more	abstractmethods,	
which	have	the	keyword	abstract in	their	declaration.

 A	class	that	contains	abstractmethods	must	be	declared	as	an	
abstract class	even	if	it	contains	concrete	(non‐abstract)	methods.

 Abstract	methods	do	not	provide	implementations.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 Abstract	property	declarations	have	the	form:
 public abstract PropertyType MyProperty { get; set; } 

 An	abstract property	omits	implementations	for	the	get accessor	
and/or	the	set accessor.

 Concrete	derived	classes	must	provide	implementations	for	every	
accessor	declared	in	the	abstract property.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 Constructors	and	static	methods	cannot	be	declared	abstract or	
virtual

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 We	can	use	abstract base	classes	to	declare	variables	that	can	hold	
references	to	objects	of	any	concrete	classes	derived	from	those	
abstract classes.

 You	can	use	such	variables	to	manipulate	derived‐class	objects	
polymorphically and	to	invoke	staticmethods	declared	in	those	
abstract base	classes.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 A	company	pays	its	employees	on	a	weekly	basis.	The	employees	are	of	four	
types:	
 Salaried	employees	are	paid	a	fixed	weekly	salary	regardless	of	the	number	of	hours	worked,	
 hourly	employees	are	paid	by	the	hour	and	receive	"time‐and‐a‐half"	overtime	pay	for	all	
hours	worked	in	excess	of	40	hours,	

 commission	employees	are	paid	a	percentage	of	their	sales,	and	
 salaried‐commission	employees	receive	a	base	salary	plus	a	percentage	of	their	sales.

 For	the	current	pay	period,	the	company	has	decided	to	reward	salaried‐
commission	employees	by	adding	10%	to	their	base	salaries.	The	company	
wants	to	implement	an	app	that	performs	its	payroll	calculations	
polymorphically.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 We	use	abstract class	Employee to	represent	the	general	concept	of	
an	employee.

 SalariedEmployee,	CommissionEmployee and	HourlyEmployee
extend	Employee.

 Class	BasePlusCommissionEmployee—which	extends	
CommissionEmployee—represents	the	last	employee	type.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 The	UML	class	diagram	in	Fig. 12.2	shows	the	inheritance	hierarchy	for	
our	polymorphic	employee	payroll	app.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Class	Employee provides	methods	Earnings and	ToString,	in	
addition	to	the	properties	that	manipulate	Employee’s	instance	
variables.

 Each	earnings	calculation	depends	on	the	employee’s	class,	so	we	
declare	Earnings as	abstract.

 The	app	iterates	through	the	array	and	calls	method	Earnings for	each	
Employee object.	These	method	calls	are	processed	polymorphically.

 Each	derived	class	overrides	method	ToString to	create	a	string
representation	of	an	object	of	that	class.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 The	diagram	in	Fig. 12.3	shows	each	of	the	five	classes	in	the	hierarchy	
down	the	left	side	and	methods	Earnings and	ToString across	the	
top.

 The	Employee class’s	declaration	is	shown	in	Fig. 12.4.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 The	SalariedEmployee class’s	declaration	is	shown	in	Fig. 12.5.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 The	HourlyEmployee class’s	declaration	is	shown	in	Fig. 12.6.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 The	CommissionEmployee class’s	declaration	is	shown	in	Fig. 12.7.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Class	BasePlusCommissionEmployee (Fig. 12.8)	extends	class	
CommissionEmployee and	therefore	is	an	indirect	derived	class	of	
class	Employee.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 The	app	in	Fig. 12.9		tests	our	Employee hierarchy.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 You	can	avoid	a	potential	InvalidCastException by	using	the	as	
operator	to	perform	a	downcast	rather	than	a	cast	operator.
 If	the	downcast	is	invalid,	the	expression	will	be	null	instead	of	throwing	an	
exception.

 Method	GetType returns	an	object	of	class	Type
(of	namespace	System),	which	contains	information	about	the	object’s	
type,	including	its	class	name,	the	names	of	its	methods,	and	the	name	
of	its	base	class.

 The	Type class’s	ToStringmethod	returns	the	class	name.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



• Assigning	a	base‐class	reference	to	a	base‐class	variable	is	straightforward.
• Assigning	a	derived‐class	reference	to	a	derived‐class	variable	is	straightfor‐
ward.

• Assigning	a	derived‐class	reference	to	a	base‐class	variable	is	safe,	because	the	
derived‐class	object	is	an object	of	its	base	class.	However,	this	reference	can	be	
used	to	refer	only	to	base‐class	members.

• Attempting	to	assign	a	base‐class	reference	to	a	derived‐class	variable	is	a	
compilation	error.	To	avoid	this	error,	the	base‐class	reference	must	be	cast	to	a	
derived‐class	type	explicitly.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 A	method	declared	sealed	in	a	base	class	cannot	be	overridden	in	a	
derived	class.

 Methods	that	are	declared	private are	implicitly	sealed.
 Methods	that	are	declared	static also	are	implicitly	sealed,	because	
staticmethods	cannot	be	overridden	either.

 A	derived‐class	method	declared	both	override and	sealed can	
override	a	base‐class	method,	but	cannot	be	overridden	in	classes	
further	down	the	inheritance	hierarchy.	

 Calls	to	sealedmethods	(and	non‐virtualmethods)	are	resolved	at	
compile	time—this	is	known	as	static	binding.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 A	class	that	is	declared	sealed cannot	be	a	base	class	(i.e.,	a	class	
cannot	extend	a	sealed class).

 All	methods	in	a	sealed class	are	implicitly	sealed.
 Class	string is	a	sealed class.	This	class	cannot	be	extended,	so	apps	
that	use	strings	can	rely	on	the	functionality	of	string objects	as	
specified	in	the	Framework	Class	Library.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Interfaces	define	and	standardize	the	ways	in	which	people	and	
systems	can	interact	with	one	another.	

 A	C#	interface	describes	a	set	of	methods	that	can	be	called	on	an	
object—to	tell	it,	for	example,	to	perform	some	task	or	return	some	
piece	of	information.	

 An	interface	declaration	begins	with	the	keyword	interface and	can	
contain	only	abstractmethods,	abstract properties,	abstract
indexers	and	abstract events	

 All	interface	members	are	implicitly	declared	public and	abstract.
 An	interface	can	extend	one	or	more	other	interfaces	to	create	a	more	
elaborate	interface	that	other	classes	can	implement.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 To	use	an	interface,	a	class	must	specify	that	it	implements	the	
interface	by	listing	the	interface	after	the	colon	(:)	in	the	class	
declaration.

 A	concrete	class	implementing	an	interface	must	declare	each	member	
of	the	interface	with	the	signature	specified	in	the	interface	declaration.

 A	class	that	implements	an	interface	but	does	not	implement	all	its	
members	is	an	abstract	class—it	must	be	declared	abstract and	must	
contain	an	abstract declaration	for	each	unimplemented	member	of	
the	interface.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 An	interface	is	typically	used	when	unrelated	classes	need	to	share	
common	methods	so	that	they	can	be	processed	polymorphically

 You	can	create	an	interface	that	describes	the	desired	functionality,	
then	implement	this	interface	in	any	classes	requiring	that	
functionality.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 An	interface	often	is	used	in	place	of	an	abstract class	when	there	is	
no	default	implementation	to	inherit—that	is,	no	fields	and	no	default	
method	implementations.

 Like	abstract classes,	interfaces	are	typically	public	types,	so	they	are	
normally	declared	in	files	by	themselves	with	the	same	name	as	the	
interface	and	the	.cs file‐name	extension.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



• To	build	an	app	that	can	determine	payments	for	employees	and	
invoices	alike,	we	first	create	an	interface	named	IPayable.

• Interface	IPayable contains	method	GetPaymentAmount that	
returns	a	decimal amount	to	be	paid	for	an	object	of	any	class	that	
implements	the	interface.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



UML	Diagram	Containing	an	Interface
 The	UML	class	diagram	in	Fig. 12.10	shows	the	interface	and	class	
hierarchy	used	in	our	accounts‐payable	app.

 The	UML	distinguishes	an	interface	from	a	class	by	placing	the	word	
“interface”	in	guillemets	(«	and	»)	above	the	interface	name.

 The	UML	expresses	the	relationship	between	a	class	and	an	interface	
through	a	realization.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Interface	IPayable is	declared	in	Fig. 12.11.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Class	Invoice (Fig. 12.12)	represents	a	simple	invoice	that	contains	
billing	information	for	one	kind	of	part.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 C#	does	not	allow	derived	classes	to	inherit	from	more	than	one	base	
class,	but	it	does	allow	a	class	to	implement	any	number	of	interfaces.

 To	implement	more	than	one	interface,	use	a	comma‐separated	list	of	
interface	names	after	the	colon	(:)	in	the	class	declaration.

 When	a	class	inherits	from	a	base	class	and	implements	one	or	more	
interfaces,	the	class	declaration	must	list	the	base‐class	name	before	
any	interface	names.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



 Figure 12.13	contains	the	Employee class,	modified	to	implement	
interface	IPayable.

 Notice	that	GetPaymentAmount simply	calls	Employee’s	abstract
method	Earnings.	

 At	execution	time,	when	GetPaymentAmount is	called	on	an	object	of	
an	Employee derived	class,	GetPaymentAmount calls	that	class’s	
concrete	Earningsmethod,	which	knows	how	to	calculate	earnings	for	
objects	of	that	derived‐class	type.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 When	a	class	implements	an	interface,	the	same	is‐a relationship	as	
inheritance	applies.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 PayableInterfaceTest (Fig. 12.14)	illustrates	that	interface	
IPayable can	be	used	to	processes	a	set	of	Invoices	and	Employees	
polymorphically in	a	single	app.	

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 Figure	12.15	overviews	several	commonly	used	Framework	Class	
Library	interfaces.

©1992-2017 by Pearson Education, 
Inc. All Rights Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



©1992‐2017	by	Pearson	Education,	Inc.	All	Rights	Reserved.



 12.7,	12.8,	and	12.11	(pp.	505‐506	of	the	textbook)


